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iv

Treatment planning tools that use biologically related models for plan optimization and/or eval-
uation are being introduced for clinical use. A variety of dose response models and quantities
along with a series of organ-specific model parameters are included in these tools. However, due
to various limitations, such as the limitations of models and available model parameters, the
incomplete understanding of dose responses, and the inadequate clinical data, the use of a bio-
logically based treatment planning system (BBTPS) represents a paradigm shift and can be
potentially dangerous. There will be a steep learning curve for most planners. The purpose of
this task group (TG) is to address some of these relevant issues before the use of BBTPS
becomes widely spread. In this report, we (1) review the biologically related models including
both used and potentially to be used in treatment planning process; (2) discuss strategies, limi-
tations, conditions, and cautions for using biologically based models and parameters in clinical
treatment planning; (3) demonstrate the practical use of the three commercially available
BBTPSs and potential dosimetric differences between biologically model–based and dose-
volume (DV)–based treatment plan optimization and evaluation; (4) identify the desirable features
and future directions in developing BBTPS; and (5) provide general guidelines and methodology
for the acceptance testing, commissioning, and routine quality assurance (QA) of BBTPS.

Abstract
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I. INTRODUCTION

The goal of radiation therapy (RT) is to deliver a therapeutic dose of radiation to target tissues
while minimizing the risks of normal tissue complications. Until recently, the quality of a radia-
tion treatment plan has been judged by physical quantities, i.e., dose and dose-volume (DV)
parameters, thought to correlate with biological response rather than by estimates of the biolog-
ical outcome itself. It is widely recognized that the DV criteria, which are merely surrogate
measures of biological responses, should be replaced by biological indices in order for the treat-
ment process to more closely reflect clinical goals of RT (Ling and Li 2005). Developments in
our understanding of advantages and limitations of existing dose-response models begin to allow
the incorporation of biological concepts into a routine treatment planning process.

I.A. BRIEF REVIEW OF THE HISTORY AND SIGNIFICANCE OF
DOSE-RESPONSE MODELING FOR TREATMENT PLANNING

In the early days of radiation oncology, the biological consequences of treatment were judged
mainly by the dose absorbed in the tumor and surrounding normal tissues, with experience-
driven accounting for overall treatment time and fractionation. To correct for the latter two factors
nominal standard dose (NSD), cumulative radiation effect (CRE), and time dose fractionation
(TDF) formalisms were developed (Strandqvist 1944; Ellis 1969; Kirk et al. 1971; Orton and
Ellis 1973). These concepts, while serving a practical purpose, were statistical in nature and
were not based on clear radiobiological principles. Progress in basic radiobiology in the mid of
the last century has led to the formulation of first models of cell killing and, eventually, to mod-
els that linked radiation sensitivity to cure rates for tumors. One of the first such formalisms was
proposed by Munro and Gilbert (1961). Although the radiobiological complexity of models to
describe cell survival, which are an essential part of any mechanistic tumor control probability
(TCP) model, varied significantly among different investigators, the assumption that a number of
surviving cells follows the Poisson distribution (section II.D) put forward by Munro and Gilbert
(1961) to this day remains a basis of the majority of biologically based TCP models.

The roots of normal tissue complication probability (NTCP) modeling lie in attempts to
quantify dependence of tolerance dose for a certain radiation effect on the size of the treated
region (reviewed in Schultheiss et al. 1983). A power-law relationship between irradiated vol-
ume and tolerance dose (section II.F.1) formulated in these early studies remains an important
component of many present-day concepts. NTCP modeling gained more attention with the
advent of three-dimensional conformal radiation therapy (3DCRT). Highly non-homogenous
dose distributions in organs at risk (OARs) obtained with 3DCRT required additional tools to
help collapse complex dose distributions into a single metric that correlates with the risk of radi-
ation injury. One of the first metrics to take into account the non-homogeneous nature of a dose
distribution was a complication probability factor (CPF) proposed by Dritschilo et al. (1978).
Subsequent efforts involved attempts to include additional radiobiological details into the model-
ing process [e.g., Källman et al. (1992b), Jackson et al. (1993), Niemierko and Goitein (1993)],
although empirical models have also found their niche (e.g., Lyman 1985). For additional infor-
mation regarding early applications of biological modeling in treatment planning, the reader is
referred to a review by Orton et al. (2008).

1
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Several radiotherapy centers incorporated dose-response modeling into their dose-
escalation protocols. TCP and NTCP models (Ten Haken et al. 1993; Jackson et al. 1996;
Mehta et al. 2001) have been used to guide safe dose escalation for non–small-cell lung cancer
(Robertson et al. 1997; Hayman et al. 2001; Rosenzweig et al. 2005; Adkison et al. 2008) and
hepatic tumors (McGinn et al. 1998; Ben-Josef et al. 2005; Dawson et al. 2006). Song et al.
(2005) used an NTCP model to guide prescription dose selection for stereotactic body radiation
therapy (SBRT) of lung tumors. Many investigators incorporated TCP and NTCP models into
in-house computer programs for evaluation of treatment plans [e.g., Sanchez-Nieto and
Nahum (2000), Warkentin et al. (2004)]. Although absolute values of predicted outcome
probabilities may not yet be reliable, such tools might provide useful information when alter-
nate treatment plans are compared, particularly in cases where dosimetric advantages of
one plan over another is not clear-cut according to DV criteria (Kutcher et al. 1991). However,
this view has been questioned (Langer et al. 1998) suggesting that caution should be exercised
even when using TCP/NTCP indices in a relative sense to rank treatment plans. Because of
doubts in robustness of model predictions and accuracy of parameter values, biologically based
plan evaluation tools have not yet found a widespread use in commercial treatment planning
systems (TPSs).

Another great potential of radiobiological modeling lies in the use of models to construct
cost functions for optimization of treatment plans. Early attempts involve optimization of dose
distributions outside of the tumor volume based on the CPF concept (Wolbarst et al. 1980).
When more sophisticated dose-response models were proposed, several research groups investi-
gated the possibility of using cost functions comprised of TCP and NTCP for optimization of
treatment plans (Källman et al. 1992a; Mohan et al. 1992; Niemierko et al. 1992; Söderström
and Brahme 1993; Wang et al. 1995). For example, the concept of “complication-free cure,”
denoted as P+, was suggested as a cost function for unconstrained biologically based optimiza-
tion (Brahme et al. 1991). Despite the potential benefits of TCP/NTCP-based optimization out-
lined in these studies, it was widely recognized that much more additional work was needed to
increase confidence in the biologically based treatment planning approach (Bortfeld et al. 1996;
Mohan and Wang 1996). A concept of the equivalent uniform dose (EUD) [including the gen-
eralized EUD (gEUD)] proposed by Niemierko (1997, 1999) has found considerable support
among proponents of biologically based optimization because it offers a compromise between
purely biological indices, such as TCP and NTCP, and traditional DV metrics. Many investiga-
tors have demonstrated that incorporating EUD-based cost functions into inverse treatment plan-
ning algorithms for the optimization of intensity-modulated radiation therapy (IMRT) plans may
result in improved sparing of OARs without sacrificing target coverage (Wu et al. 2002, 2003,
2005; Thieke et al. 2003; Stavrev et al. 2003; Yang and Xing 2004; Thomas et al. 2005; Chapet
et al. 2005; Spalding et al. 2007). Several studies reported that optimization of IMRT plans
based on a mixture of EUD-based and DV-based cost functions is a robust way to obtain desired
dose distributions. This approach is therefore attractive for the purposes of the commercial
implementations of biological models for treatment planning (section IV).

AAPM REPORT NO. 166
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I.B. LIMITATIONS OF CURRENTLY USED DOSE-VOLUME–BASED
TREATMENT PLANNING

Single or multiple DV constraints used for inverse treatment planning or plan evaluation are
based on clinical studies that demonstrate correlation between tumor control/complication inci-
dence and particular DV metrics. For example V20 (percentage of lung volume receiving at least
20 Gy) is used to gauge the probability of a plan causing grade ≥ 2 or grade ≥ 3 radiation pneu-
monitis (Graham et al. 1999). There are a number of limitations associated with this approach:
(1) Typically more than one point on the DVH (e.g., V5, V40, mean lung dose) correlates with
the complication. This correlation is however specific to treatment delivery technique, i.e., IMRT
or 3DCRT, beam arrangements, etc. Marks et al. (2010) in their recent QUANTEC (section II.G)
report on radiation effects in lung noted that “the correlations between dosimetric parameters
are technique dependent, and readers should carefully assess the similarity of their treatment
technique to the historical reports before using any of these limits as clinical constraints.”
(2) Generally, optimization with DV constraints is indirect, requiring substantial skill in select-
ing values and relative weights for constraints that provided optimal TCP and NTCP values.
With typically 1 to 3 constraints, a range of optimized normal tissue DVHs that comply equally
well with these few constraints but carry distinctly different risk of complications is possible.
When biological methods are also used in the optimization, then DV points may be replaced
with a function that more efficiently drives the shape of the DVH curves to achieve the plan
leading to the most favorable overall treatment outcome, rather than satisfying the applied
constraints. (3) Specifying multiple DV constraints increases computational complexity of the
inverse treatment planning problem. Moreover, cost functions based on DV constraints can lead
to multiple local minima (Deasy 1997; Wu and Mohan 2002). This implies that a search algo-
rithm designed for global minimum problems is likely to get trapped in a local minimum, poten-
tially leading to less favorable dose distributions.

Most current systems that use DV-based plan optimization also lack tools for routinely eval-
uating biologically based metrics alongside DVH metrics. These tools are an important step for
developing datasets that demonstrate intra-clinic correlation with outcomes, and comparisons
with conventional DV point constraint optimization. Since dose distributions for plans driven by
biological methods’ constraints may differ substantially from those driven by DV point con-
straints, evaluation tools are important as a basis for progression to preferentially adopting bio-
logical methods in optimization.

I.C. SCOPE AND TERMINOLOGY

Historically, dose prescription in RT has been performed using population-based knowledge
about behavior of a particular type of tumor or normal tissue. Rapid advances in functional
imaging, molecular techniques, predictive assays, and RT delivery technology will sooner or
later enable implementing truly-individualized RT in the clinic (Stewart and Li 2007). This task
group report (TG-166) will refer to a framework of RT that takes advantage of information
about spatial and temporal distribution of relevant patient-specific biological parameters, such as
tumor and normal cell radiosensitivity, oxygenation status, proliferation rate, etc., as biologically
guided radiation therapy (BGRT). Other investigators have previously used various alternate
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terms to describe the same basic concept, e.g., radiobiologically optimized radiation therapy
(Brahme 1999), multidimensional conformal radiotherapy (Ling et al. 2000), biologically con-
formal radiation therapy (Yang and Xing 2005), biologically based radiation treatment planning
(Ling and Li 2005), theragnostic imaging (Bentzen 2005), and risk-adaptive optimization (Kim
and Tomé 2006).

An integral part of BGRT is the ability to design dose distributions that would produce the
desired balance between tumor cure and normal tissue injury based on the knowledge of bio-
logical properties of the particular tumor and surrounding normal tissues. Such a multidimen-
sional problem is most appropriately addressed in the framework of inverse treatment planning
presently employed for the optimization of IMRT plans and will rely on models to describe rela-
tionships between dose distributions and biological outcomes. This TG report will refer to any
use of biological response models that involves feedback from a model during the treatment
planning process as biologically based treatment planning (BBTP). The feedback may be
either passive/automated in the case of inverse treatment planning, or with active participation
from the planner in the case of forward treatment planning.

Whereas future development of BGRT relies on sufficient advances in methods to obtain
individualized biological parameters, BBTP has already started to enter clinical practice. BBTP
is viewed as a subset of BGRT. However, BGRT is more than just BBTP based on patient-
specific biological parameters; BGRT will employ biological models not only at the time of initial
planning, but also to adapt treatment based on tumor/OAR response to RT (e.g., Søvik et al.
2007). For a detailed discussion on BGRT and BBTP, readers are referred to a vision 20/20
paper by Stewart and Li (2007). The scope of this report is limited to BBTP, i.e., the use of bio-
logical models for plan optimization and evaluation in external beam radiation therapy. The
emphasis is made on the models that are implemented or may potentially be implemented in
commercial TPSs.

The following definitions and terms are used in this report:
Plan optimization or inverse planning: the process of generating an optimal plan following

the desired objectives. The planner specifies objectives (i.e., optimization criteria) including
constraints (limits that should not be violated) and goals for both the target and normal struc-
tures. Internally, the planning system represents these objectives in a cost function, which must
be maximized or minimized by an optimization algorithm.

Tumor control or local control: no evidence of tumor recurrence in the region treated with
a definitive intent.

Normal tissue complication: an unfavorable symptom, sign, or disease temporally associ-
ated with the use of radiation therapy. The Common Terminology Criteria for Adverse Events
(CTCAE) (http://ctep.cancer.gov) or EORTC/RTOG scale (Cox et al. 1995) is commonly used
for grading normal tissue complications.

Functional subunit (FSU): structurally or functionally discrete tissue elements (Withers et
al. 1988), e.g., nephrons in kidney or alveoli in lung.

Volume effect: modification of normal tissue/organ tolerance with a change in irradiated vol-
ume. That is, the tolerance dose increases to a degree that depends on the tissue and complica-
tion endpoint as the irradiated volume decreases. The magnitude of the volume effect depends,
at least in part, on an underlying anatomic/biological structure of the organ.

AAPM REPORT NO. 166
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Parallel organ: normal organ in which each FSU functions relatively independently
and damage to a sufficiently small region does not render the whole organ dysfunctional.
Consequently, a volume threshold or functional reserve may exist. Examples are lung, kidney,
and liver.

Serial organ: normal organ in which FSU are structured in a series; if one FSU is incapacitated,
the organ will exhibit complications. Examples are spinal cord, intestines, and optic nerve.

Serial and parallel response: normal organ response characterized by small and large vol-
ume dependence, respectively. The connection between organ architecture designated as serial
or parallel (see above) and serial or parallel response is not always exact. Nevertheless within
the framework of this report, an exact correspondence between organ architecture and response
is assumed. This means that in parallel organs complications are assumed to occur after a sub-
stantial fraction of FSUs are damaged, volume effect is large, and response is “parallel.” In con-
trast, a serial organ would exhibit complications after a single FSU is incapacitated, volume
effect is small, and response is “serial.”

II. DOSE RESPONSE MODELS

The field of study of mathematical models of tumor and normal tissue responses to dose is exten-
sive and beyond the scope of this report to explore fully. The present treatment is intended to
provide the reader with perspective on the models and parameters typically encountered in
BBTP along with references helpful to further exploration. Supplemental information is pre-
sented in the appendices.

II.A. GENERALIZED EQUIVALENT UNIFORM DOSE (gEUD)

The concept of equivalent uniform dose (EUD) proposed by Niemierko (Niemierko 1997)
provides a single metric for reporting non-uniform tumor dose distributions. It is defined as the
uniform dose that, if delivered over the same number of fractions as the non-uniform dose
distribution of interest, yields the same radiobiological effect. To extend the concept of EUD
to normal tissues, Niemierko (1999) proposed a phenomenological formula referred to as the
generalized EUD, or gEUD:

(1)

where vi is the fractional organ volume receiving a dose Di and a is a tissue-specific parameter
that describes the volume effect. For a → –∞, gEUD approaches the minimum dose; thus nega-
tive values of a are used for tumors. For a → +∞, gEUD approaches the maximum dose (serial
organs). For a = 1, gEUD is equal to the arithmetic mean dose. For a = 0, gEUD is equal to the
geometric mean dose. The cell killing-based EUD (cEUD, appendix A) has a more mechanis-
tic background than the gEUD. However the gEUD is often used in plan evaluation and opti-
mization because the same functional form can be applied to both targets and OARs with a
single parameter capturing (it is hoped) the dosimetric “essence” of the biological response.

gEUD =




∑ v Di i

a

i

a
1

,
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II.B. LINEAR-QUADRATIC (LQ) MODEL

The linear-quadratic (LQ) formalism is most commonly used to model cell survival. Radiation-
induced reproductive cell death has been conclusively linked to DNA damage, specifically to
DNA double-strand breaks (DSB). In cellular environment, DSB dose-response is linear up to
very high doses (40 to 50 Gy) and approximately 40 to 50 DSB are produced per Gy (Sachs et
al. 1997). Most DSB are faithfully repaired; however, some undergo binary misrepair, which
may lead to a production of a lethal lesion, while some fail to get repaired. Induction, repair,
and misrepair of DSB and formation of lethal lesions as a function of dose rate and time can be
described as a system of differential equations (Sachs et al. 1997). This led to development of
kinetic reaction-rate models, lethal-potentially-lethal (Curtis 1986) and repair-misrepair
(Tobias 1985). The solution to these equations to derive dose-response for lethal lesions takes
a complex form and is available for only specific situations; for example, instantaneous dose
delivery followed by full repair. It has been demonstrated that for doses and dose rates of rele-
vance to radiation therapy, with a possible exception of doses per fraction used in SBRT, i.e., in
excess of 10 Gy per fraction, the yield of lethal lesions can be well approximated by an LQ
function of dose. That is, the fraction of cells surviving irradiation to a dose D in n fractions
can be approximated as

(2)

where α and b are the proportionality coefficients for the linear and quadratic components,
respectively. Effects of repopulation (appendix B) and repair (not discussed) may be reflected as
additional terms within the exponent, but Eq. (2) is most commonly encountered.

Validity of the LQ model for large doses per fraction encountered in radiosurgery and SBRT
has become a matter of ongoing debate (Marks 1995; Hall and Brenner 1995; Brenner 2008;
Kirkpatrick et al. 2008; Fowler 2008). The issue of contention is that the LQ formalism predicts
a continuously bending survival curve while experimental data clearly demonstrate that at large
doses the surviving fraction becomes an exponential function of dose; i.e., follows a straight line
on a semi-log plot. Hybrid solutions accounting for this effect have been suggested (Park et al.
2008). Despite these controversies, the LQ model remains a tool of choice for isoeffect calcula-
tions in conventionally fractionated photon beam therapy.

II.C. LQ-BASED CORRECTION OF DOSE-VOLUME HISTOGRAMS

To account for variations in dose per fraction in different subvolumes of a target or an OAR with
changes in fractionation schedules, total physical dose corresponding to each DVH bin, Di, is
sometimes converted into isoeffective dose in 2-Gy fractions using the equation (Wheldon et al.
1998; Yorke 2001):

(3)LQED2
1

1
2i i

i

D

D n

=
+

+

α β

α β

,

S D
D
n

= − −






exp ,α β
2
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where n is the number of fractions. This procedure requires one parameter, the a/b ratio, which
is typically assumed to be equal to 3 Gy for late-responding normal tissues and 10 Gy for tumors
and early responding normal tissues. In general literature, radiation responses were typically
determined for 2-Gy fractions. It is thus a good practice to utilize LQED2 rather than D in cal-
culations of NTCP and TCP.

II.D. COMMON TCP MODELS

A majority of mechanistic TCP models are based on the assumption that the number of surviv-
ing clonogenic tumor cells, i.e., cells capable of regrowing the tumor, follows the Poisson distri-
bution (Munro and Gilbert 1961). A unicellular hypothesis, i.e., a single surviving clonogen is
sufficient to regrow the tumor is further invoked. If the initial number of clonogens is N, the
average number of surviving clonogens is given by SN, where S is the overall surviving fraction
after a course of radiation therapy; e.g., Eq. (2). The probability of tumor control is then equal
to the probability that no clonogens survive:

TCP = exp(–SN). (4)

TCP can be approximated by any two-parameter mathematical function representing a sigmoid-
shaped curve. In commonly used empirical TCP models these two parameters are D50, the dose

at which 50% of tumors are controlled, and normalized dose-response gradient

evaluated at D = D50 (Brahme 1984). In practice, parameter details sufficient for a fully described
mechanistic model, such as N or the distribution of a (appendix B) are often unavailable.
Therefore, even mechanistic models approximate these parameters with empirical approximations.

The Poisson assumption [Eq. (4)] has limitations when clonogen repopulation occurs during
treatment. One obvious problem is that simple application of exponential tumor growth predicts
that all tumors recur at sufficiently long times after external beam treatment or for permanent
implants with exponentially decaying sources (Zaider and Minerbo 2000). Some investigators
have proposed TCP models based on detailed descriptions of clonogen proliferation kinetics
(Tucker and Taylor 1996; Zaider and Minerbo 2000). Such non-Poisson models, however, lack
simple analytical solutions, which has limited their applications in BBTP.

In general, TCP is formulated as a product over the structure’s voxels weighted probability
functions:

(5)

where M is the number of voxels and the relative volume of the voxel is vi = Vi /Vref. For practi-
cal calculations, bins of a differential DVH, (Di, vi), may be used. Several formulations of the
probability are commonly encountered. One (Lind et al. 1999) uses the LQ model:

(6)P D D
D
ni i

i( ) = − − −












exp exp .eγ α β

2

TCP = ( )
=

∏ P Di
v

i

M
i

1

,

γ = D
d

dD
TCP

THE USE AND QA OF BIOLOGICALLY RELATED MODELS FOR TREATMENT PLANNING



8

Here, the number of clonogens, N, is approximated by exp(eg ). In Eq. (6), g is the normalized
dose-response gradient at the dose, where the absolute dose-response gradient is the steepest.
The expression N = exp(eg ) is exact when b = 0 or while the dose per fraction remains constant
and constitutes a very close approximation otherwise (Bentzen and Tucker 1997). Given input
values of D50, g , and a /b , individual values for a and b are calculated as

(7)

and

(8)

Another formulation is a linear-Poisson formulation (Lind et al. 1999):

(9)

If the dose at each voxel is converted to its equivalent dose for a 2-Gy fraction using the LQ
equation [Eq. (3)] and that dose (LQED2i) is substituted for Di in Eq. (9), the result is equiva-
lent to Eq. (6). These are the most commonly encountered formulations used for calculating the
TCP among the treatment planning systems examined in this report.

The logistic function is a popular choice to describe the sigmoid shape dose-response in
empirical TCP models. For example, Okunieff et al. (1995) used:

(10)

where k is related to the normalized dose-response gradient according to k = D50/(4g ). The
empirical log-logistic function (Schultheiss et al. 1983; Niemierko and Goitein 1991):

(11)

where k controls the slope of the curve. This formulation is recommended in AAPM Report 137
(Nath et al. 2009) for use with brachytherapy sources.

II.E. AVAILABILITY OF TCP MODEL PARAMETERS

Okunieff et al. (1995) have collected and analyzed dose-response data for local control of vari-
ous tumors treated with adjuvant intent (control of microscopic disease) and with curative intent
(control of gross disease). Equation (10) was fit to the data, and estimates of D50 and g were
reported for 62 dose-response curves for the control of macroscopic disease and 28 dose-
response curves for the control of microscopic disease. Parameter estimates for the Poisson
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statistics-based model [Eqs. (B1) or (B2)] have been obtained for head & neck tumors (Roberts
and Hendry 1993; Wu et al. 1997), breast tumors (Brenner et al. 1993; Guerrero and Li 2003),
malignant melanoma (Brenner 1993), squamous cell carcinoma of the respiratory and upper
digestive tracts (Brenner 1993), prostate cancer (Brenner and Hall 1999; Wang et al. 2003),
brain tumors (Qi et al. 2006), rectal cancer (Suwinski et al. 2007), and liver cancer (Tai et al.
2008). The Poisson-based model incorporating distribution of interpatient radiosensitivity
[Eq. (B3)] has been used to refit previously analyzed datasets (Brenner 1993; Brenner and Hall
1999) for breast cancer, melanoma, tumors of the respiratory and upper digestive tracts (Webb
1994), and prostate cancer (Nahum et al. 2003).

II.F. COMMON NTCP MODELS

The notion of volume effects is the cornerstone of efforts to model dose-response relationships
for normal tissues. In parallel organs, considerable sparing of organ function is afforded by
reducing the irradiated volume and their response is well correlated with a mean organ dose. In
contrast, serial organs typically exhibit threshold-like responses to radiation and little, if any,
modulation of the response is obtained by reducing the volume of organ irradiated. Their
response is generally well correlated with a maximum organ dose or the “hot spot.” A robust
model should accurately describe dose-response of incidence of complications as well as prop-
erly account for volume effect. Briefly presented below are NTCP models commonly used in
BBTP. Serial (critical element) and parallel (critical volume) organ models are described in
appendix C.

II.F.1. Lyman-Kutcher-Burman (LKB) Model

The Lyman model (Lyman 1985) was designed to describe complication probabilities for uni-
formly irradiated whole or partial organ volumes. The cumulative distribution function (CDF) of
the normal distribution is chosen to represent an empirical sigmoid dependence of NTCP on
dose. Two parameters, TD50 and m, describe the position of the sigmoid curve along the dose
axis and curve steepness, respectively. A third parameter, n, describes the magnitude of the vol-
ume effect using a power-law relationship between the tolerance dose and irradiated volume:

(12)

Here, n is related with parameter a in Eq. (1) as n = 1/a, TD(V) is the tolerance dose for a
given partial volume fraction V, and TD(1) is the tolerance dose for the full volume. Small
values of n correspond to small volume effects (“serial” effects) and large values correspond to
large (parallel) volume effects. Although n ≤ 1 is used for the earliest applications of the Lyman
model (Burman et al. 1991), this is not a physical or biological restriction and many recent
analyses find best fits to complications data with n > 1.

Because the Lyman model is defined for uniform irradiation and normal tissues are rarely
irradiated uniformly, several algorithms (DVH-reduction algorithms) to convert a heterogeneous
dose distribution into a uniform partial or whole organ irradiation resulting in the same NTCP
have been designed [see Hamilton et al. (1992) and Cozzi et al. (2000) for an overview]. Among
these the effective volume method (Kutcher and Burman 1989) is most commonly used to

TD V TD V n( ) − ( )1 .
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complement the Lyman model. The combined formalism is often referred to as the Lyman-
Kutcher-Burman (LKB) model (e.g., Deasy 2000).

A mathematically equivalent but more conceptually transparent formulation of the LKB
model was first proposed by Mohan et al. (1992). According to this model, NTCP is calculated
using the following equations:

(13)

(14)

(15)

where Deff is the dose that, if given uniformly to the entire volume, will lead to the same NTCP
as the actual non-uniform dose distribution, TD50 is the uniform dose given to the entire organ
that results in 50% complication risk, m is a measure of the slope of the sigmoid curve, n is the
volume effect parameter, and vi is the fractional organ volume receiving a dose Di. Note that Deff

is conceptually identical to the gEUD [Eq. (1)] with parameter a = 1/n. To account for differ-
ences in dose per fractionation, it is common to replace Di with the equivalent dose delivered in
2-Gy fractions, LQED2 [Eq. (3)]. For a derivation of Eqs. (13)–(15) from the Lyman model
(Lyman 1985) and the Kutcher-Burman DVH reduction scheme (Kutcher and Burman 1989),
see Deasy (2000), Li et al. (2003), and Luxton et al. (2008).

II.F.2. Relative Seriality Model

The relative seriality model or the s-model (Källman et al. 1992b) describes response of an
organ with a mixture of serial- and parallel-arranged FSUs. The relative contribution of each
type of architecture is described by the parameter s, which is equal to unity for a fully serial
organ and zero for a fully parallel organ. NTCP is given by the following equation [see Källman
et al. 1992b for details):

(16)

where vi is the fractional organ volume receiving a dose Di and P(Di) is the complication.
Although the relative seriality model has been designed using mechanistic tissue architecture
principles, in practice values of the parameter s found to provide best fits to clinical data often
exceed the theoretical maximum of unity, which prompted suggestions to consider the model
phenomenological (Stavreva and Stavrev 2002). The Poisson model for P(Di) [Eqs. (6)–(8), are
often used in TPSs for calculation of NTCP.
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II.F.3. Other NTCP Models

Some alternative NTCP modeling approaches have been proposed to improve the accuracy of
complication risk predictions. These models have the potential to be used in future BBTP efforts
and therefore warrant a brief mention. Although DV metrics usually show the strongest correla-
tions with complication incidence compared to demographic and clinical variables, the inclusion
of non-dosimetric factors into NTCP models has been shown to increase their predictive power.
For example, more accurate predictions of radiation pneumonitis risk have been obtained when
plasma levels of transforming growth factor b (Fu et al. 2001), tumor position along the cranio-
caudal axis (Hope et al. 2006), or smoking status (Tucker et al. 2008) were added to dosimetric
parameters. In another example, the use of concurrent chemotherapy provides an independent
predictive factor of acute esophageal toxicity in lung cancer patients and, when combined
with dosimetric factors, helps to more accurately estimate patients’ risks (Bradley et al. 2004;
Belderbos et al. 2005). NTCP analyses based on patient populations with incomplete follow-up
may substantially underestimate complication risks. At the expense of additional adjustable
parameters, the effect of censoring can be taken into account, resulting in potentially more accu-
rate NTCP estimates (Tucker et al. 2008). The majority of current NTCP models are DVH-
based and therefore ignore important information about location of cold and hot spots within an
OAR. The so-called “cluster models” (Thames et al. 2004; Tucker et al. 2006) are based on the
assumption that not only volume, but also spatial distribution of hot spots affect complication
risks. These models provide a first step toward a new class of NTCP models that would take into
account the entire three-dimensional (3D) dose distribution, and may further improve the accu-
racy of NTCP estimates.

II.G. AVAILABILITY OF NTCP MODEL PARAMETERS
AND QUANTEC SURVEY

The modern knowledge of normal tissue tolerance was summarized in the seminal publication
by Emami et al. (1991). The authors compiled tolerance dose values for uniform whole- and par-
tial-organ irradiation of 28 critical structures based on available literature and personal experi-
ence. In an accompanying article, Burman et al. (1991) fit the Lyman model (section II.F.1) to
the Emami et al., tolerance data. In the past 18 years, many investigators tested NTCP predic-
tions based on the Emami et al., and Burman et al., reports against new clinical data and/or pro-
vided new parameter estimates for various NTCP models. Most data have been collected for the
lung, parotid glands, liver, rectum, and esophagus (Kong et al. 2007; Milano et al. 2007 and ref-
erences therein); information about other organs, albeit less abundant, is also available. Several
attempts have been made to obtain NTCP model parameters based on pooled data from differ-
ent institutions (e.g., Kwa et al. 1998; Rancati et al. 2004; Tucker et al. 2007; Semenenko and
Li 2008). However, it is recognized that many limitations are inherent in extracting/pooling data
from the literature. That is, variations in endpoint definitions/grading scales, fractionation
schedules, patient populations, dosimetry, etc., among different studies have to be reconciled.
Regardless of these difficulties, there is an urgent need to summarize the new normal tissue tox-
icity data in a clinically useful manner.

QUANTEC (QUantitative Analysis of Normal Tissue Effects in the Clinic) is a multidisci-
plinary effort jointly funded by the American Association of Physicists in Medicine (AAPM)
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and the American Society for Radiation Oncology (ASTRO), which aims to summarize current
knowledge of DV dependencies of normal tissue complications from external beam radiother-
apy, and where possible, give quantitative guidance for clinical treatment planning and opti-
mization. Following an initial meeting in October 2007 attended by approximately 75 radiation
oncologists, medical physicists, and biostatisticians, extensive literature reviews were undertaken
and clinically significant endpoints identified for some 16 organs. Where possible, results were
synthesized and compared, guided by the quality and levels of evidence of the studies. Criteria
included prospective or retrospective nature, statistical power, presence and reliability of quanti-
tative data on DV effects. Other clinical factors influencing complications were assessed, such as
the influence of chemotherapy, fraction size, and preexisting medical conditions. Where avail-
able, NTCP model parameters were compiled. This information is expected to provide a boost
for further deployment of biological models in the clinical treatment planning process. The
results of QUANTEC analyses were published (QUANTEC, 2010). The QUANTEC publica-
tions are available on the AAPM website (http://www.aapm.org).

III. USES OF BIOLOGICALLY RELATED MODELS
IN TREATMENT PLANNING

Dose-response models for tumor and normal structures, as reviewed in section II, can be
broadly characterized as either mechanistic or phenomenological. The former attempt to mathe-
matically formulate the underlying biological processes, whereas the latter simply intend to fit
the available data empirically. Mechanistic models are often considered preferable, as they may
be more rigorous and scientifically sound. However, the underlying biological processes for most
tumor and normal tissue responses are fairly complex and often are not fully understood, and it
may not be feasible to accurately and/or completely describe these phenomena mathematically.
On the other hand, phenomenological models are advantageous since they typically are relatively
simple compared to the mechanistic models. Their use obviates the need to fully understand the
underlying biological phenomena. Limitations of such empirical approaches are that they strive
for mathematical simplicity and thus are limited in their ability to consider more complex phe-
nomena. Further, it may be somewhat risky to extrapolate model predictions beyond the realm
within which the model and parameter values were validated. A mechanistic model might be
more forgiving in its ability to extrapolate to these more uncertain areas.

As described later in section IV, phenomenological models are mostly used in the currently
available BBTPS due to their simplicity in implementation. It is a vision of this task group that
more mechanistic models will be employed as BBTPS advances (section VI). In this early stage
of BBTPS, the EUD is the most commonly used phenomenological model. As demonstrated
with EUD models, this report describes general strategies, advantages, and limitations for using
biologically based models for treatment planning.

Biologically related figures of merit may be used for both plan optimization and evaluation.
Both tasks are closely related as any optimization algorithm continuously evaluates treatment
plans and alters them incrementally in order to improve their figures of merit. However, desired
properties (e.g., predicting power) of biological models may differ whether they are used for
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plan optimization or plan evaluation. As pointed out by Choi and Deasy (2002), treatment opti-
mization only requires a model to have the ability to steer the optimization process in the desired
direction. In contrast, for an effective use of dose-response models in plan evaluation, especially
when absolute TCP/NTCP values are used to guide clinical decisions, the accuracy of model
predictions is of paramount importance.

III.A. BIOLOGICAL MODELS IN PLAN OPTIMIZATION

III.A.1. Advantages of Biological Cost Functions over DV Cost Functions

Limitations on use of DV constraints in treatment planning were discussed in section I.B.
Optimization criteria based on biologically related models are potentially more versatile and
directly associated with treatment outcome than those based on DV criteria.

If biologically related models are constructed to capture the dose response, they would allow
some extrapolation beyond the range of clinical evidence. Unfortunately, there is no guarantee
that a biologically related model does indeed estimate the consequence of dose distributions if
they deviate greatly from the baseline dataset that led to the model parameters. However, for the
purpose of dose optimization it is sufficient that the use of the model can guide the optimization
towards favorable dose distributions.

Another aspect of plan optimization is that the figure of merit has to address the inevitable
variability of patient geometries and resultant dose distributions in a population. In this regard
multiple DV criteria for a single organ may become problematic as they need to be given an
individual priority and ideally ought to be combined into a single figure of merit to avoid ambi-
guities. In contrast, biologically related models have the potential to provide an inherent priori-
tization of multiple DV criteria incorporated in a single figure of merit. The single parameter for
organ dose optimization when gEUD is used has been demonstrated by Wu et al. (2003) for
head and neck and prostate sites and by Mihailidis et al. (2010) for breast and chest wall sites.

The optimization with cost functions based on the EUD concept, commonly used in the
available BBTPSs, is straightforward and numerically expedient (Romeijn et al. 2004; Alber
and Reemtsen 2007).

III.A.2. Precautions for Using Biological Models in Plan Optimization

As most of the currently available BBTPSs use EUD/gEUD-based optimizations, we mainly
discuss the concerns with EUD here. With respect to optimization, the DV effect incorporated
by a EUD-based model is of paramount importance. For example, the assumption that a normal
tissue responds in serial manner leads to lack of control over the low- and mid-dose range, as the
risk of complications is predominantly determined by the high doses. Conversely, if a parallel
behavior is assumed, hot spots are allowed but large volumes to lower doses are undesirable. In
a worst-case scenario, a serially responding complication would be assumed to behave in a par-
allel fashion. Plan optimization may then be steered towards allowing clinically unacceptable
hot spots. If in doubt, one should always maneuver intentionally towards a smaller volume
effect, as this will put a limit on both the size and the dose of hot spots in normal tissues dur-
ing plan optimization.
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The gEUD models for serial response do not give rise to local minima of the optimization
problem (Choi and Deasy 2002). On the other hand, it cannot be ruled out that gEUD models
for parallel response create local minima, though due to their generally less pronounced nonlin-
earity, this risk is less than that for DV objectives. Although gEUD itself is convex for a ≥ 1 (Choi
and Deasy 2002), any cost function formulated as a product of nonlinear gEUD/TCP/NTCP
models is subject to violating the convex or quasi-convex properties of the underlying biological
models (Romeijn et al. 2004). Two examples include the probability of complication-free tumor
control, P+ (Källman et al.1992a), and the product of sigmoid functions based on gEUD (Wu et
al. 2002). Although the clinical significance of local minima remains to be seen (Wu and Mohan
2002), from a mathematical point of view inappropriate choice of the cost function for plan opti-
mization may result in multiple local minima, which diminishes the theoretical advantages of
using biological-model–based cost functions.

Direct maximization of biological indices for targets (e.g.,TCP or gEUD) is known to pro-
duce highly inhomogeneous target dose distributions (de Gersem et al. 1999; Wu et al. 2002)
because TCP is increased by the creation of hot spots and using TCP alone does not penalize hot
spots. Thus, one must consider limiting planning target volume (PTV) dose inhomogeneity or at
least constraining the hot spots to the gross tumor volume (GTV) or clinical target volume
(CTV). This can be achieved by adding physical maximum-dose cost functions to optimization
criteria for target volumes. Alternatively, the hot spots in target volumes can be controlled using
biological cost functions assuming serial response by treating the targets as both tumors and
“hypothetical” normal tissues (Wu et al. 2002).

Another challenging issue is to use a biologically related model for a fractionation scheme
that is very different from the scheme under which the model was derived. Applying model
parameters that were derived for a conventional fractionation scheme to the optimization of a
hypofractionated treatment (e.g., stereotactic radiosurgery [SRS] or SBRT) is especially haz-
ardous. In the absence of clinical data to provide guidance, this task group advises adjusting
parameters (DV or biological) to steer critical organ doses into a dose volume zone that is proven
to be safe clinically. Examples of such safety zones are provided in the reports from the recent
QUANTEC initiative (QUANTEC 2010) and from the TG-101 report (Benedict et al. 2010).

III.A.3. Strategies for Effective Use of Biological Models in Plan Optimization

For plan optimization using biologically related models, two rival, yet complementary, concepts
are the EUD and TCP/NTCP models. In one sense, the difference between EUD-based models
and TCP/NTCP models is irrelevant, because every TCP/NTCP model can be converted into an
EUD model (find the dose which results in the equivalent probability if applied to the whole
volume) and vice versa (choose a suitable sigmoid wrapper function which maps EUD onto the
interval [0, 1]). Note that this EUD does not need to be the same simple expression as the
“gEUD.” Thus, TCP/NTCP models are not essential and a EUD-based formalism represents the
most basic form of expressing a biologically related cost function for plan optimization (Romeijn
et al. 2004; Alber and Reemtsen 2007).

To optimize a plan based on biological models, multiple EUD-dependent goals can be com-
bined to a weighted combination that defines the composite cost function for the optimization
algorithm. These biologically related goals usually need to be supplemented by any number of
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physical goals that would ensure certain properties deemed clinically desirable by a treating
physician. For example, a limit on hot spots in the target volume is usually motivated by estab-
lished clinical practice rather than rigorous biological considerations. Furthermore, there may be
biological goals in normal tissues for which no dose-response model exists, for example the over-
all conformity of the dose to the target volume. All of these cost functions can be combined in
optimization, although how this is implemented is determined by the TPS.

It can be beneficial to treat EUD-based cost functions as hard constraints because they are
directly associated with control/complication risks. On the other hand, the definition of EUD
allows for a certain freedom in shaping the dose distribution. Therefore, EUD constraints are
less restrictive than multiple DV constraints and offer an inherent trade-off between different
dose levels, allowing controlled violations for some DV constraints while overfulfilling other
constraints to generate an overall better dose distribution.

Although each biologically motivated cost function incorporates a specific volume effect and
thus favors a certain shape of the dose distribution, the result of an optimization depends on a
complex interplay of all participating terms of the cost functions. For this reason, it is essential
that the treatment planner understand which traits of a dose distribution are controlled by the
chosen cost function terms and which traits are merely coincidental. It is helpful to visualize the
action of an EUD-based model on a DVH as a set of connected DV objectives whose weight
grows in a specific fashion. For a cost function term assuming serial response, the weight of
these virtual DV objectives grows with dose [Figure 1(a)]. The smaller the volume effect, the
more rapidly the weight of these objectives grows. For a cost function term assuming parallel
response, their weight should tend to zero for very high doses and reach a maximum around the
mid-dose range [Figure 1(b)].

The best measure against the hazards of using biologically motivated cost functions is to
understand their effect on the dose distribution and to know the desirable properties of the final
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function (a) or a parallel-type cost function (b).
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dose distribution. The overall dose distribution derived from such an optimization should be
carefully inspected; one should not rely purely on DVH metrics. Each desired goal should be
reflected by a specific cost function term, which should be chosen to be capable of controlling
this particular property of the dose distribution sufficiently. Thus, the task of setting up a
biologically related optimization problem becomes, in the order of increasing importance:
(1) choice of sufficient cost functions; (2) choice of right types of cost functions; (3) choice of
right volume effect parameters; and (4) clear idea of what features make a dose distribution
acceptable or unacceptable in your clinic. For example, an organ like spinal cord, for which
the maximum dose is considered to have the highest priority, is ideally modeled by gEUD with
a >> 1. This kind of model is very sensitive to high doses while it is very insensitive to low and
intermediate doses. Clearly, this kind of behavior is not sought for organs like lung, where the
primary objective is to spare sufficient lung volume from intermediate doses while controlling
the maximum dose is only of secondary importance. Here, a gEUD model with a smaller a
value or a parallel complication model is a better choice, but one has to be aware that this type
of model does not control the maximum dose. In order to achieve this, it needs to be comple-
mented with either a second gEUD model with a greater parameter a value or a maximum dose
constraint. Notice that, in this example, the two models represent two types of complication con-
trol with different volume dependency: one aiming to control volume-related complications like
pneumonitis and loss of lung function, while the other trying to manage more local complica-
tions like destruction of large blood vessels or even necrosis.

III.A.4. Effects of DVH Computation Inaccuracies and Statistical Uncertainties
on Plan Optimization Using Biological Models

Biologically based models that use more pronounced nonlinear functions than DV functions
tend to amplify the effects of any uncertainty in the dose and/or DVH computation. For exam-
ple, the EUD can be calculated directly from the DVH. Depending on the implementation of the
TPS, a DVH may be more than just the straightforward statistics of the voxel doses of an organ.
Thus, EUD computed directly from the dose calculation grid and from the DVH may differ.
Further, all issues associated with the computation of a DVH, such as voxelization, interpolation,
binning, and volume normalization, affect the computation of EUD. If the uncertainties are ran-
dom and not systematic in nature, the EUD error will usually tend to be on the safe side, i.e.,
normal tissue EUD will be overestimated while target EUD will be underestimated. This is a
consequence of the positive curvature of the most common EUD implementations (with the
exception of the gEUD for parallel complications). These TPS-related sources of error can be
taken into account in practice, if a number of treatment plans that were considered safe are ret-
rospectively evaluated with the EUD models intended for future dose optimization.

A special case of EUD estimate bias arises if the dose distribution is calculated with Monte
Carlo methods. Here, the statistical uncertainty of the dose translates into a systematic error of
EUD (Kawrakow 2004), which grows with the magnitude of the noise in the dose. For low
statistical uncertainties (total dose ≤ 1%) this error can be corrected precisely. EUD calculated
without this correction from a Monte Carlo dose grid may differ from the values based on DVH.
Therefore, low statistical uncertainties, preferably <1% of the total dose, are desirable in the
Monte Carlo–calculated dose distribution.
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III.B. BIOLOGICAL MODELS IN PLAN EVALUATION

III.B.1. Advantages of Biological Models over DV Evaluation Criteria

As with plan optimization, either EUD or TCP/NTCP models can be used for biologically based
plan evaluation. Although both concepts can be used interchangeably for plan optimization, the
EUD has the advantage of fewer model parameters, as compared to TCP/NTCP models (sec-
tions II, III.A.3) and allows more clinical flexibility. The proper calibration of a TCP/NTCP
model requires monitoring the outcomes for a large number of patients. In contrast, EUD mod-
els can rank a number of treatment plans without having to quantify the actual tumor
response/complication risk as long as the chosen parameters (a in the case of gEUD) are cali-
brated to give reasonable results for clinical plans for which the treatment outcomes are known.
An EUD model can be calibrated against the past clinical practice of any institution simply by
calculating the previously applied distribution of EUD values. This establishes a reference range
of EUD values that were considered acceptable in the past. Studies along this line have been
reported (for example, Wang and Li 2003; Mihailidis et al. 2010).

Thus a properly calibrated EUD model has the potential to provide a reliable ranking of rival
plans and is most useful when a clinician needs to select the best plan from two or more alter-
natives. Of course, it is essential that the clinician understands the prior calibration process and
is willing to consider biological evaluation. The utility of EUD for evaluating a single plan is
limited. In contrast, properly calibrated TCP/NTCP models can provide direct estimates of out-
come probabilities, which are more clinically meaningful than the EUD. If these estimates are
within the clinician’s goals, the treatment plan under consideration can be accepted without hav-
ing to explore other possible plans. The disadvantage of TCP/NTCP models is that they require
more parameters (most commonly three) and more effort for their calibration as compared to the
EUD (one parameter for gEUD [Eq. (1)] and the simplest form of cEUD [Eq. (A1)]). Similar to
an EUD model but with more importance, a TCP/NTCP model derived from the experience of
other institutions (different TPS, dose calculation, patient population, dose fractionation, etc.)
must be applied with extreme caution.

Use of DV criteria (or EUD alone) for plan evaluation implies a binary outcome, i.e., an
effect occurs if a DVH passes above a certain point in DV space, and does not occur in the
DVH passes below. Such threshold-like behavior of tumor control/complication risk is a rough
approximation of actual biological processes. In contrast, biological evaluation metrics in the
form of TCP/NTCP provide continuous estimates of outcome probabilities. Also, consider a case
when multiple DV points are used to evaluate a dose distribution in a particular organ. It might
happen that the dose distribution passes the evaluation test for some points and fails for others,
requiring the treatment planner/radiation oncologist to prioritize different DV criteria. Biological
metrics may be advantageous in such situations because they can weigh various DV criteria and
can condense them into a single unambiguous estimate of biological outcome, as demonstrated
by Wu et al (2003).

Some mechanistic biological models [e.g., Eq. (B1)] directly incorporate terms describing
radiosensitivity as a function of dose per fraction. If properly calibrated using the data clinically
approved for a range of fraction sizes, these models implicitly take into account the dose per
fraction effects and can be used to predict outcomes of different fractionation schemes. DV cri-
teria, on the other hand, apply to a single fraction size for which their efficacy has been tested.

THE USE AND QA OF BIOLOGICALLY RELATED MODELS FOR TREATMENT PLANNING
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If the standard fractionation scheme is significantly altered, DV-based prescription/normal
tissue constraints need to be explicitly modified based on clinical experience and/or isoeffect
calculations (section II.C).

III.B.2. Precautions for Using Biological Models in Plan Evaluation

In contrast to the use of biological models in plan optimization, where biologically based cost
functions are only required to capture the correct volume effect and to steer dose distributions
in a desired direction, the use of biological models to replace DV criteria in plan evaluation
requires clinically realistic correct plan ranking and/or outcome estimates. To evaluate a partic-
ular plan (not just plan ranking), accurate TCP/NTCP models and parameter estimates become
absolutely essential. It is also essential that the models used be applied retrospectively to make
sure that they agree with the treatments that you know to be safe and effective in your practice.
Whether the problem lies in the abstract model or its implementation in TPS, such a reality
check is necessary before using a model for clinical plan evaluation. As it is desirable to incor-
porate outcome data in the treatment planning process, two options exist for using biological
models in plan evaluation. The users can derive TCP/NTCP model parameters based on their
own experience by calibrating selected model(s) against observed clinical outcomes. This
approach has the potential to yield the most reliable data directly reflecting the practice adopted
at a particular institution. Furthermore, initial parameter estimates can be easily refined as addi-
tional follow-up data become available. However this method may not be feasible for many small
and even mid-sized institutions, as it requires expertise in outcome modeling, sufficient patient
throughput, and substantial time commitment.

Another option is to cautiously use published parameter values. Published data are available
for many tumor sites and complication types (sections II.E and II.G), affording the user a vari-
ety of choices. However, this approach is fraught with significant risks if published parameter
sets are applied injudiciously without following the same practices that were used to generate the
original data (e.g., Ten Haken et al. 2006). Caution should be exercised if clinical and demo-
graphic characteristics of the patient population under evaluation differ substantially from those
in the original patient cohort used to derive published parameter estimates. The reason is that
additional variables influencing the outcome, which were not present in the original population,
may be present in the evaluated patient population (e.g., Koh et al. 2006). When using published
parameter estimates for plan evaluation, it has to be carefully verified that they apply to the
appropriate endpoints, organ volume definitions, and fractionation schemes.

Most NTCP models do not include explicit description of dose-per-fraction effects in the
attempt to minimize the number of parameters. Given this, whether one is using in-house or
published data, parameter estimates can only be used to evaluate treatment plans corresponding
to a narrow range of doses per fraction similar to the doses per fraction in the original patient
population. If the fraction size in a plan under evaluation is very different from that in the
dataset used to derive parameter estimates, both sets of data should be normalized to the same
dose per fraction, usually using the LQ formalism [Eq. (3)]. If the dose per fraction varies con-
siderably in the patient cohort of which parameter estimates are being derived, it is reasonable to
normalize all doses to some standard fractionation scheme. Examples include LKB modeling of
liver (Dawson et al. 2002) and lung (Seppenwoolde et al. 2003) complications. These sets of
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parameter estimates, obviously, work best for fraction-size corrected normal tissue DVHs.
However, if these parameter values are used for non-corrected dose delivered with a conven-
tional target fraction size (i.e., ~2 Gy per fraction), the fraction sizes for normal tissues are
much less than 2 Gy and hence a model produces conservative overestimates of NTCP. This
argument is reversed for hypofractionated delivery, and the model can significantly underesti-
mate the risk of a complication (Xu et al. 2006). Even if the prescription fraction size is
unchanged, the simultaneous use of an increasing number of beams/orientations (e.g. with
multi-field IMRT) reduces the dose per fraction in the exposed normal tissues away from the tar-
get, compared to what they would have seen with a “conventional” plan with a limited number
of beam orientations used sequentially (e.g., AP/PA beams followed by opposed oblique
beams).

Whether self-derived or published parameter estimates are used, it is essential to standard-
ize the organ volume relative to which the parameter is computed. For example, the EUD or
NTCP for rectum and rectal wall will differ because the dose distributions in each volume dif-
fer. The EUD or NTCP will also depend on the delineated length of rectum or rectal wall. Much
more subtle is the computation of biological indices for the spinal cord, where either a standard-
ized length has to be segmented (e.g., including all thoracic and cervical vertebrae) or the
parameter is computed relative to a normalized volume. Care should be taken that for parallel
organs, whose response is correlated with the mean dose, the entire organ is included in the
image set and dose calculation grid.

Parameter estimates clearly should be used only with the model for which they were
derived. In some cases, fits to more than one model are available for the same dataset. For such
situations, it has been observed that different NTCP models often provide different answers to
important clinical problems (Zaider and Amols 1998; Moiseenko et al. 2000; Muren et al.
2001). It is generally not possible to determine which model is right based on observing fits to
clinical data (Moiseenko et al. 2000). To resolve this situation and to ensure further progress in
the use of biological models for plan evaluation, concerted efforts to select the most practical
models and to create databases of parameter estimates are urgently needed. Such sets of data
(e.g., the QUANTEC initiative, section II.G), being supported by experts in TCP/NTCP mod-
eling, will provide a strong basis for TPS manufacturers to include biologically based evalua-
tion tools in their products.

In general, biological figures of merit for target volumes require much less consideration
since their utility for outcome prediction is frequently limited by uncertainties of individual
tumor biology. Also, current clinical practice demands homogeneous doses to the PTV, which
usually includes a large share of normal tissue, while a TCP figure can only be meaningful for
the GTV or CTV. It is important to understand which aspects of a target dose distribution influ-
ence the TCP. Various investigators have demonstrated using the Poisson-based model with inter-
patient heterogeneity [Eq. (B3)] that even very small cold spots may considerably decrease the
TCP, whereas the hot spots only affect the TCP to a great extent if the volume of the hot spot is
large (Sanchez-Nieto and Nahum 1999; Tomé and Fowler 2000, 2002).

Available sets of TCP parameter estimates are less consistent than NTCP parameters in the
sense that different analyses use somewhat different assumptions when deriving model parame-
ters, e.g., fixed number of clonogens vs. fixed clonogen density, inclusion or exclusion of the
time factor, etc. Strictly speaking, it is incorrect to apply parameters derived using one set of
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assumptions to even a slightly modified model. This poses difficulties because users wishing to
integrate TCP calculations into their plan evaluation routine need to implement not only differ-
ent models that were used to analyze data for different sites, but also different variations of the
same basic model. Large sets of TCP data compiled using uniform criteria are rare [e.g.,
Okunieff et al. (1995)]. Efforts similar to QUANTEC are needed to summarize TCP data and to
derive common sets of parameters for one or two models, which could then be built into com-
mercial TPSs.

Finally, current clinical standards for acceptable treatment plans in external beam RT include
certain DV goals that are not readily transcribed using biological metrics, such as target dose
uniformity and overall conformity of high-dose regions. These goals should be considered sep-
arately when EUD/TCP/NTCP are used for plan evaluation.

IV. DESCRIPTION AND COMPARISON OF CURRENTLY
AVAILABLE TREATMENT PLANNING SYSTEMS
EMPLOYING BIOLOGICAL MODELS

Three commercially available and most commonly used TPSs that employ biological models
have been selected to demonstrate the issues discussed above (section III). These three systems,
presented in a chronological order based on their release times, are Monaco® V1.0 (CMS/Elekta,
Maryland Heights, MO), Pinnacle® V8.0h (Philips Medical Systems, Andover, MA), and
Eclipse V10.0 (Varian Medical Systems, Palo Alto, CA). Each of these systems uses different
models and/or different implementation. Initial experiences for using the Monaco and Pinnacle
systems have been reported (Semenenko et al. 2008; Qi et al. 2009). Readers are referred to ven-
dor-provided manuals or training for more detailed descriptions about these systems. Selected
system-specific issues are discussed. It should be noted that system upgrades may make some
issues discussed below no longer relevant.

IV.A. CMS MONACO®

At the time this reported is written, the Monaco system (V1.0) does not offer a plan evaluation
tool based on biological metrics. Only the plan optimization is discussed for this system.

IV.A.1. Plan Optimization Tools

The Monaco system is one of the first commercial IMRT treatment planning systems incorpo-
rating biologically based optimization features. Monaco offers three biological cost functions
titled Poisson statistics cell kill model, Serial complication model, and Parallel complication
model to handle dose prescription for targets and OARs exhibiting serial and parallel behavior.
Five physical cost functions are also supplied: Quadratic overdose penalty, Quadratic underdose
penalty, Overdose DVH constraint, Underdose DVH constraint, and Maximum dose constraint.
Despite the presence of conventional DV-based cost functions, the system has been specifically
designed to utilize biological models, and produces better plans when the biological optimization
features are used to their full potential. The Poisson cell kill model has been made a mandatory
cost function for targets. If there is a sole PTV, this function must be assigned to the PTV; addi-
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tional physical cost functions may also be specified. In case of multiple PTVs, the Poisson cell
kill model must be used to create optimization criteria for at least one of the PTVs.

The biological cost functions implemented in Monaco are based on a formalism developed at
the University of Tübingen (Alber and Nüsslin 1999; Alber 2000). For each of the three func-
tions, a 3D dose distribution in a structure is reduced to a single index that reflects a putative bio-
logical response of the structure to radiation. This index is referred to as isoeffect. For the Poisson
cell kill model and Serial complication model, the isoeffect is expressed in units of dose. For the
Parallel complication model, the isoeffect is a percentage of the organ that is damaged. Dose or
percentage levels specified by the user as optimization goals are referred to as isoconstraints.
Following each iteration, isoeffects are recomputed and compared with isoconstraints to deter-
mine whether user-specified criteria have been met.

Isoeffects for targets (i.e., the Poisson cell kill model) are calculated as

(17)

where a ′ is the average cell sensitivity, r ′ is the average clonogen density, V is the total volume
of the organ (i.e., number of voxels), and is a biological response function given by

(18)

where is the local density of clonogenic tumor cells, is the cell sensitivity in a par-
ticular voxel, and is the absorbed dose in this voxel. Equations (17) and (18) are ready to
accommodate information about spatially heterogeneous clonogen density and/or clonogen
radiosensitivity that will become available in the future, pending advances in biological imaging
techniques. However at present, spatial variations in either clonogen density or cell sensitivity
are not taken into account, i.e., and Parameter r ′ has been hard-coded to
106 clonogens per voxel and presently its value has no impact on isoeffect calculations because

in Eq. (18) and r ′ in Eq. (17) cancel out. Parameter a ′ takes on user-specified values
in the range 0.1 to 1.0 Gy–1 with a default value of 0.25 Gy–1. Equation (18) represents a sim-
plified (only linear component of cell killing is taken into account) expression for the number
of surviving clonogens in a voxel based on the standard Poisson statistics-based TCP model
[Eq. (B1)]. Equation (17) is an inverted form of Eq. (18) and conceptually represents the equiv-
alent uniform dose (section II.A).

Isoeffects for serial-type OARs are specified in terms of an effective dose given by

(19)

where k is the volume effect parameter, V is the total number of voxels, and a response function
applied to each voxel takes the form
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Combination of Eqs. (19) and (20) is mathematically equivalent to the gEUD formula (sec-
tion II.A) with k � a. Deff approaches maximum dose as k increases.

Although the Serial complication model with k = 1 may be used to handle situations when
mean organ dose needs to be controlled, i.e., for parallel-type structures, Monaco provides an
additional cost function for this purpose. Isoeffects for the Parallel complication model are com-
puted in terms of the mean organ damage:

(21)

where V is the total number of voxels and a voxel response function h is calculated as

(22)

where d0 is referred to as the reference dose, i.e., a dose that results in 50% complication rate,
k is the power-law exponent, which determines the steepness of the sigmoid curve described by
Eq. (22). As a rule of thumb, one may choose k = 0.15 Gy–1 × d0 (Alber and Belka 2006). When
expressed as a fraction rather than a percentage, the mean organ damage is mathematically
equivalent to the fdam concept of the parallel complication model (appendix C). Properties of bio-
logical cost functions employed in Monaco are summarized in Table I. Limits imposed on
parameter or isoconstraint values are shown in parentheses. Because the Poisson cell kill model
does not include a mechanism to control hot spots in target volumes, a physical cost function,
either the Quadratic overdose penalty or Maximum dose, must be added to create optimization
goals for target volumes. In our practice, it has always been possible to design good quality treat-
ment plans using the three biological functions listed in Table I and the Quadratic overdose
penalty cost function (Semenenko et al. 2008).
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Table I. Biological Models Used for Treatment Plan Optimization in CMS Monaco.

Structure Objectives/
Type Name Parameters Constraints Comments

Target Poisson statistics Cell sensitivity Prescription Mandatory cost function
cell kill model (0.1–1.0 Gy–1) (1–150 Gy) for targets; no penalty

for hot spots

OAR Serial Power-law Equivalent Effective for controlling
complication exponent (1–20) uniform dose maximum organ dose
model (1–150 Gy)

OAR Parallel Reference dose Mean organ Effective for controlling
complication (1–100 Gy) damage mean organ dose
model Power-law (1%–100%)

exponent (1–4)



23

Monaco supports the concept of constrained optimization. That is, the two biological cost
functions used for OARs and all physical cost functions are treated as hard constraints. All opti-
mization criteria specified using these cost functions will be met by the TPS. The Poisson cell
kill model is only an objective, meaning that the system finds the optimal cell kill subject to
satisfying the hard constraints. As a result, the treatment planner does not have to specify
any weights, i.e., effectively all cost functions except the Poisson cell kill model are assigned
infinitely large weights. Because target dose is only an objective, achieving this objective may
often be limited by one or more constraints on dose in nearby OARs or constraints on hot spots
in target volumes. A Sensitivity Analysis tool (Alber et al. 2002) is provided to help the planner
to identify the limiting constraints. Desired target coverage could then be obtained by relaxing
(increasing) isoconstraint values for the restrictive cost functions.

In addition to primary biological constraints for OARs (i.e., Serial and Parallel complication
models), Monaco allows specification of secondary optimization objectives with these functions.
This is referred to as the “Multicriterial option.” This option could be used to attempt to further
reduce OAR doses when adequate target coverage had already been achieved or in special cases
when additional OAR sparing is more important than adequate target coverage, such as re-treat-
ments for recurrent tumors.

IV.A.2. Parameter Sensitivity

The impact of changing Monaco parameters/isoconstraints (Table I) on optimized dose distri-
butions is demonstrated using a test head & neck (hypopharynx) case planned with a 6 MV
seven-field IMRT (Figure 2). Only one parameter or isoconstraint at a time was changed.
Figure 2(a) shows the result of changing cell sensitivity for PTV 70 from the default value of
0.25 Gy–1 to maximum and minimum allowable values of 1.0 and 0.1 Gy–1, respectively. This
parameter has a small effect on minimum dose in PTV 70, with greater values of cell sensitiv-
ity corresponding to larger minimum doses: 60.4 Gy for cell sensitivity of 0.1 Gy–1, 62.5 Gy
for 0.25 Gy–1, and 65.7 Gy for 1.0 Gy–1. Because the Poisson cell kill model is only an objec-
tive, changing prescription dose for PTV 70 without any changes in dose-limiting constraints
does not affect target DVHs (data not shown). Behavior of the Serial complication model has
been investigated on an example of spinal cord planning organ-at-risk volume (PRV), which
was defined as 5-mm expansion around the spinal canal. Increasing power-law exponent param-
eter or decreasing EUD isoconstraint for the Serial complication model applied to the spinal
cord PRV results in lower maximum doses for the cord accompanied by some deterioration in
target coverage [Figures 2(b) and 2(c), dashed lines], and vice versa [Figures 2(b) and 2(c),
dotted lines]. Changing power-law exponent parameter for the Parallel complication model
applied to the parotid gland from a 3.9 value suggested in Monaco reference documentation to
the lowest allowed value of 1.0 [Figure 2(d)] does not result in any discernable trend. Smaller
reference dose [Figure 2(e)] or mean organ damage [Figure 2(f)] values in the Parallel compli-
cation model lead to lower mean doses to the parotid gland. In the example chosen, reducing
the reference dose or mean organ damage for the left parotid gland results in substantial spar-
ing of that gland with no deterioration of target coverage. However, mean dose to the other
parotid gland somewhat increases (not shown).
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IV.B. PHILIPS PINNACLE®

IV.B.1. Plan Optimization Tools

Pinnacle3 (V8.0h) offers biological optimization features incorporated into its P3IMRT inverse
treatment planning module. The biological objective functions have been developed by
RaySearch Laboratories AB (Stockholm, Sweden) (Härdemark et al. 2004). As opposed to
Monaco, Pinnacle is not a designated biologically based optimization system, but rather uses bio-
logical cost functions to enhance the traditional, DV-based optimization approach. In addition to
a number of DV cost functions (Min dose, Max dose, Uniform dose, Min DVH, Max DVH, and
Uniformity), Pinnacle has at its disposal three biological cost functions denoted Min EUD,
Target EUD, and Max EUD. These cost functions are defined as (Härdemark et al. 2004):
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Figure 2. Sensitivity of dose distributions obtained with CMS Monaco to changes in parameters or iso-
constraints. Solid lines show base plan DVHs; dashed and dotted lines show DVHs obtained by varying
each parameter/isoconstraint in either direction from its base value. For clarity, only DVHs for an
affected OAR (spinal cord PRV or left parotid gland) and for target volumes (PTV 70, PTV 54, and
PTV 50) are shown.
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where EUD0 is the desired dose level specified by the user. Actually attained dose, EUD, is com-
puted according to the gEUD formalism (section II.A). Function q is defined as

(24)

where H is the Heaviside step function.
Properties of biological cost functions implemented in Pinnacle for the purpose of plan opti-

mization are summarized in Table II. Each function requires specification of a single volume
parameter, a, which has the same interpretation as described by Niemierko (1999). For negative
a values, cold spots influence EUD to a greater extent, and for positive a values, EUD is most
influenced by hot spots. Generally, negative a values are an appropriate choice for targets, posi-
tive a values should be used for serial structures, and a = 1 should be used for parallel structures.
Biophysically meaningful ranges of the volume parameter for a corresponding cost function are
shown in parentheses in Table II. However in contrast to Monaco, Pinnacle does not impose any
limits on values of the volume parameter or EUD.

Pinnacle employs the traditional unconstrained optimization approach. Target and OAR cost
functions contribute to the overall cost function in proportion to user-specified weights. Also for
any cost function (with the exception of the Uniformity, which can only be used as a constraint
and the Uniform dose, which can only be used as an objective), a treatment planner has an
option to use it as either an objective or constraint. The latter effectively sets a very high penalty
for violating an optimization goal specified using this cost function.

Philips Pinnacle allows a gradual transition to biologically based inverse planning through
combining conventional DV-based and novel EUD-based cost functions. Especially for targets,
it is advised to supplement EUD-based objectives with DV-based ones to better control target
dose distributions (Härdemark et al. 2004; Wu et al. 2003).
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Table II. Biological Models Used for Treatment Plan Optimization in Philips Pinnacle.

Structure Objectives/
Type Name Parameters Constraints Comments

Target Min EUD Volume EUD Penalizes for too low
parameter (a < 1) (Gy or cGy) EUD

Target Target EUD Volume EUD Penalizes for any
parameter (a < 1) (Gy or cGy) deviation from the

desired EUD

OAR Max EUD Volume EUD Penalizes for too high
parameter (a ≥ 1) (Gy or cGy) EUD; can be used with

both serial and parallel
structures
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IV.B.2. Plan Evaluation Tools

Pinnacle provides two separate tools, titled NTCP/TCP Editor and Biological Response panel,
for plan evaluation with the help of biological models. The NTCP/TCP Editor is used to obtain
NTCP and TCP estimates. NTCP is calculated according to the LKB model (Eqs. 13–15). A
database of model parameters originating from Burman et al. (1991) is available, and a user is
given the option to customize parameter values. TCP is calculated using an empirical sigmoid
curve corresponding to the CDF of the normal distribution. Users are responsible for specifying
their own estimates of two model parameters describing dose to control 50% of tumors, D50, and
a measure of a slope of the sigmoid curve, m.

Users licensed for Biological Evaluation may take advantage of an enhanced plan evaluation
tool that includes a database of endpoint- and tumor stage-specific parameter values (accompa-
nied by literature references) for calculation of NTCP and TCP, capability to compare alternate
treatment plans side-by-side, graphical representation of NTCP/TCP for individual structures,
and composite estimates of NTCP, TCP, and probability of complication-free tumor control for
the entire plan. Models and parameter estimates implemented in the Biological Response panel
are based on the expertise collected at the Karolinska Institute and Stockholm University (Lind
et al. 1999; Kåver et al. 1999). The Källman s-model, also known as the relative seriality model
[Eq. (16)], is used to calculate NTCP. The Poisson model with LQ cell survival [Eqs. (6)–(8)] is
used to describe response of the entire organ to uniform irradiation. TCP is calculated with the
Poisson model [Eqs. (5)–(8)]. The majority of default parameter values provided for NTCP cal-
culations come from a Ph.D. thesis (Ågren 1995), which is not readily available in the open lit-
erature. Given the publication date, the parameter estimates were likely obtained by refitting the
relative seriality model to the Emami et al. (1991) data. Default values of D50 and g provided for
TCP calculations are taken from old literature dating back to the 1960s, with the most recent
report being from 1993. Both TCP and NTCP parameter databases are customizable, but the
choice of models is fixed. The models used for biological plan evaluation in Philips Pinnacle are
summarized in Table III.

IV.B.3. Parameter Sensitivity

Sensitivity of dose distributions obtained with Pinnacle to changes in volume parameter (same
as power-law exponent in Monaco) or EUD (Table II) is shown in Figure 3 for the same head &
neck case irradiated with the 6 MV beam. Optimization goals for PTV 70 were created using
the Target EUD cost function combined with the Uniformity constraint. Variations in the volume
parameter specified with Target EUD cost function have very small effect on PTV 70 DVH
[Figure 3(a)]. Minimum dose to PTV 70 slightly increases as the volume parameter decreases:
62.1 Gy for a = 50, 62.4 Gy for a = –10, and 64.6 Gy for a = –50. Increasing the EUD for
PTV 70 has an effect of shifting the DVH toward higher doses [Figure 3(b)]. Increasing the
volume parameter for the Max EUD cost function applied to the spinal cord PRV from 12 to
20 results in the reduction of maximum dose to the cord and some deterioration of target cov-
erage [Figure 3(c)]. Decreasing the volume parameter from 12 to 1 has little, if any, effect on the
dose distributions. Maximum dose to the cord decreases as the EUD value specified for the Max
EUD cost function is decreased [Figure 3(d)]. Minimum dose in a PTV closest to the spinal cord
PRV (PTV 54 in this example) also decreases in proportion to the EUD for the cord. Similar
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Table III. Biological Models Used for Treatment Plan Evaluation in Philips Pinnacle.

Structure Parameters/
Tool Type Name/Description Inputs Comments

NTCP/TCP Target Empirical TCP model D50, m Sigmoid curve represented
Editor by the CDF of the normal

distribution

OAR Lyman-Kutcher model D50, m, n Database of model
parameters is provided

Biological Target Poisson/LQ-based D50, g, a /b Database of model
Response TCP model parameters is provided
Panel OAR Källman s-model D50, g, a /b, Database of model

seriality (s) parameters is provided

Multiple Composite TCP TCP for
targets individual targets

Multiple Composite NTCP NTCP for
OARs individual OARs

Targets Probability of Composite TCP,
and complication-free composite NTCP
OARs tumor control

TCP TCP= ∏ i
i

NTCP NTCP= − −( )∏1 1 i
i

P+ = −( )max ,TCP NTCP 0

trends were observed for the Max EUD cost function applied to the left parotid gland, i.e.,
increasing the volume parameter or decreasing the EUD reduces dose to the parotid gland and
creates cold spots in adjacent target volume (PTV 54). Decreasing the volume parameter or
increasing the EUD slightly increases dose to the parotid gland with virtually no effect on target
coverage [Figures 3(e) and 3(f)].

IV.C. VARIAN ECLIPSE

IV.C.1. Plan Optimization Tools

Eclipse (V10.0) provides biological optimization through the use of a “plug-in” to an application
by RaySearch Laboratories (Stockholm, Sweden). Selecting biological optimization transfers all
patient and plan information to the application for fluence optimization with a separate rapid cal-
culation algorithm. The optimized fluences are then returned to the Eclipse dose engine for the
final dose calculation.

The optimizer differentiates between biological and physical functions used in the optimiza-
tion. The biological models used in the optimization include TCP Poisson-LQ, NTCP Poisson-
LQ, and NTCP Lyman, and are tabulated in Table IV. The TCP Poisson-LQ and NTCP
Poisson-LQ models are identical, respectively, to the TCP and NTCP models implemented in the
Biological Response panel in Pinnacle. The NTCP Lyman model is the LKB model calculated
based on an LQ-corrected DVH [Eq. (3)]. This model is thus somewhat different from the
“Lyman-Kutcher” model in the NTCP/TCP Editor in Pinnacle, which does not take an extra a /b
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parameter and is calculated based on non-corrected DVHs. The models allow specification of
repair time for NTCP models and repair/repopulation times for TCP. The biological functions
allow the user to specify the weight (Constraint Bound Percentage) used in calculation of the
cost function. Physical functions do not allow assignment of a weight but are regarded as con-
straints that cannot be compromised. Physical functions include: maximum dose, maximum
dose for percentage structure volume, maximum gEUD, uniformity. For structures defined as
targets one may additionally define minimum values for dose, dose for percentage of structure
volume, and gEUD. Each structure may also have a conformity constraint that specifies the dose
gradient near to the structure.

A library of tissue-specific parameter values for the TCP and NTCP models is provided,
enabling selection of standardized values within the Biological Optimizer application. The
library may be edited and modified to include user-specified parameter sets and tissues.

The optimizer screen displays the evolution of items used to monitor and modify parameters
used in optimization: optimization functions and parameter values, color wash of coronal and
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Figure 3. Sensitivity of dose distributions obtained with Philips Pinnacle to changes in volume parame-
ter (power-law exponent) or EUD. Solid lines show base plan DVHs; dashed and dotted lines show
DVHs obtained by varying each parameter in either direction from its base value. For clarity, only
DVHs for an affected OAR (spinal cord or left parotid gland) and for target volumes (PTV 70, PTV 54,
and PTV 50) are shown.
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sagittal views of the evolving dose distribution, beam fluence patterns, charts and tables of
evolving cost function values for each constraint, DVH, and a graph plotting sensitivity of the
biological response for a change in dose per fraction for constant total number of fractions. Dose
distributions from plans calculated in Eclipse may be specified to be used as a base dose from
which the optimization proceeds. During optimization the user iterates through addition and
modification of optimization functions to achieve the desired DVH characteristics or until the
optimization thresholds are reached.

IV.C.2. Plan Evaluation Tools

After a treatment plan has been generated in Eclipse, it may be evaluated using the Biological
Evaluation Module. The same biological functions used in the optimizer may be used to calculate

THE USE AND QA OF BIOLOGICALLY RELATED MODELS FOR TREATMENT PLANNING

Table IV. Biological Models Used for Treatment Plan Optimization in Varian Eclipse.

Structure Objectives/
Type Name Parameters Constraints Comments

Target Min EUD Volume EUD Penalizes for too low
parameter (a) (Gy or cGy) values; cannot be

weighted; listed under
physical functions

Target Max EUD Volume EUD Penalizes for high values;
or parameter (a) (Gy or cGy) cannot be weighted;
OAR listed under physical

functions

Target TCP Poisson-LQ D50, g, a /b, TCP Penalizes for small
seriality (s), values; can be weighted
T1/2 for short vs.
long repair time,
% with long
repair time,
repopulation
times: Tpot and
Tstart

OAR NTCP D50, g, a /b, NTCP Penalizes for large
Poisson-LQ seriality (s), values; can be weighted

T1/2 for short vs.
long repair time,
% with long
repair time

OAR NTCP Lyman D50, m, n, g, a /b, NTCP Penalizes for large
T1/2 for short vs. values of NTCP; can be
long repair time, weighted
% with long
repair time
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NTCP and TCP values for structures. Evaluation of EUD is not supported in this module.
Models used for plan evaluation are included in Table V.

The tool may be used to evaluate effect on NTCP and TCP values of changing fractionation
schedules (e.g., twice vs. once per day), changing number of fractions or scaling total dose. In
addition to the conventional DVH, two other graphs are available for plan evaluation. The
LQ-Scaled DVH utilizes the a /b ratio specified in the NTCP or TCP model to scale the DVH
to equivalent values for 2-Gy fractions [Eq. (3)] as a standard benchmark for plan comparison.
The Radiobiological Response graph shows the potential effect of altering total plan dose by
plotting the value of NTCP or TCP versus a scale factor (0.7 to 3.0) for the total dose.

Since the RaySearch libraries are used in Pinnacle also, the general comments in section
IV.B.2 on parameters are applicable to the Eclipse evaluation tools.

IV.C.3. Parameter Sensitivity

The sensitivity of DVHs to changes in model parameters, e.g., gEUD volume parameter (power-
law exponent), or to threshold levels for the gEUD specified in the optimizer, were tested in
Eclipse in a similar way as that discussed for Monaco and Pinnacle. Results of these tests are
illustrated in Figure 4. Optimization goals for PTV 70 were created with a maximum dose con-
straint and a minimum EUD constraint, instead of a minimum dose constraint. The maximum
dose constraint was selected over the use of a uniformity constraint since it provided more reli-
ably consistent results. If only a gEUD constraint is used, without a max dose or uniformity con-
straint, then the maximum dose in the PTV 70 volume rose to >100 Gy. This is consistent with
the discussion in section III.A.2, on the lack of sensitivity to hot spots for TCP and gEUD opti-
mization constraints for target tissues. In the creation of the data in Figure 4, only one parame-
ter was changed at a time. For example, Figure 4(a) shows the result of changing power-law
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Table V. Biological Models Used for Treatment Plan Evaluation in Varian Eclipse.

Structure
Tool Type Name Parameters Comments

Biological Target TCP D50, g, a /b, seriality(s), User selectable
Evaluation Poisson-LQ T1/2 for short vs. long parameters or from

repair time, % with database of model
long repair time, parameters
repopulation times:
Tpot and Tstart

OAR NTCP D50, g, a /b, seriality(s), User selectable
Poisson-LQ T1/2 for short vs. long parameters or from

repair time, % with database of model
long repair time parameters

OAR NTCP Lyman D50, m, n, a /b, User selectable
T1/2 for short vs. long parameters or from
repair time, % with database of model
long repair time parameters
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exponent for PTV 70 from the default value of –10 to values of –1 and –50. It is seen from
Figure 4(a) that variations in DVHs for PTV 70, PTV 54, and PTV 50 were relatively insensi-
tive to the magnitude of the volume parameter. V70 was 97.6, 98.5, 99.2, and 99.5% for a values
of –1, –5, –10, –50, respectively. Figure 4(b) presents the result for varying gEUD for PTV 70
that changes the DVHs for PTV 70 and PTV 54. Figure 4(c) demonstrates that larger values of
the power-law exponent (a > 10) have similar effects on the DVHs, while the D50 for cord PRV
was 28, 25, and 25 Gy for a = 1, 12, and 20, respectively. Increasing the threshold for maximum
gEUD shifted the cord DVH uniformly toward the threshold dose [Figure 4(d)]. Since the
parotid abuts the target volumes, interaction of constraint on the normal tissue affecting the tar-
get dose was noticeable. Sensitivity to the value of the power-law exponent was significant for
DVH of the parotid [Figure 4(e)]. Values of V45 = 36, 22, and 16% for the parotid were obtained
for a = 0.1, 1, and 5, respectively. Mean doses were similar for a = 1 and a = 5. The significant
changes in the DVHs for the target volumes (PTV 70, PTV 54, and PTV 50) were observed
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Figure 4. Sensitivity of dose distributions obtained with Varian Eclipse to changes in volume parameter
(power-law exponent) or EUD for elected target and OARs. Solid lines show base plan DVHs; dashed
and dotted lines show DVHs obtained by varying a parameter from its base value, for example,
(a) changing the power-law exponent for PTV 70 as indicated by the headings. For clarity, only DVHs
for an affected OAR (spinal cord or left parotid gland) and for all target volumes (PTV 70, PTV 54, and
PTV 50) are shown.
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with the large volume parameter value (i.e., a = 5). Fixing the volume parameter at a = 1 for
the parotid and then varying the gEUD threshold increase or decrease the mean doses in the
expected direction [Figure 4(f)].

Constraints using NTCP and TCP values may also be used to shape the dose distribution.
This is more complex owing to the number of input parameters and, in principal, produces sim-
ilar results to gEUD constraints as outlined in section III.A.3. To obtain a clinically desirable
dose distribution using NTCP- and TCP-based cost functions, it is often necessary to use param-
eters for these functions quite different from those used to evaluate their value. For example
using a D50 much lower for optimizing the parotid dose can produce a better final dose distribu-
tion than obtained using the same value of D50 used to evaluate the NTCP of the plan.

IV.D. COMPARISON OF CMS MONACO, PHILIPS PINNACLE,
AND VARIAN ECLIPSE SYSTEMS

IV.D.1. Comparison and Verification of EUD, NTCP, TCP, or P+ Values Obtained
with Pinnacle and Eclipse Systems

Both Pinnacle and Eclipse systems provide tools to calculate EUD, TCP, NTCP, or P+ (Table III)
as plan evaluation metrics. To verify this calculation, selected metrics have been calculated man-
ually and compared to the same quantities reported by Pinnacle and Eclipse. All work in this sec-
tion has been performed using a benchmark case, which involves a single 6 MV, 20×20 cm2

photon beam incident on a sufficiently large cubical water phantom at 100 cm source-to-surface
distance. A dose of 72 Gy in 40 fractions was prescribed to a point at 6 cm depth along the cen-
tral axis. Four simple structures (3 rectangular, 1 triangular) were created inside the phantom
[Figure 5(a)]. The DVHs for these structures look similar to those encountered in a typical plan
[Figure 5(b)]. This case was chosen because it could be easily and reproducibly set up in any
commercial TPS, providing a simple, nearly identical input dose distribution for comparison of
biological evaluation tools between different TPSs. Use of a percentage depth dose (PDD)-based
dose distribution and simple structures also facilitates spreadsheet-based, hand calculations of
DVH, TCP, and NTCP values for comparison. Details on the geometries of the structures in the
benchmark phantom are provided in Table VI.

In a DVH view page of the Pinnacle system, users can specify a value of the volume
parameter, a, for each structure, and the TPS will calculate and report gEUD in the region of
interest ROI Statistics section in addition to physical quantities. By default, a = 1, and the
reported gEUD is the same as the mean dose. Parameter a was varied in the range between
–50 and 50, and gEUD values reported by the TPS for all four structures were recorded. The
same gEUD values were then calculated on the spreadsheet based on DVHs exported from
Pinnacle. Both sets of data agreed very well (<0.1%) for all combinations of the structure and
volume parameter.

To spot-check results reported in the Biological Response panel from Pinnacle, TCP calcula-
tions were performed for two structures and NTCP calculations were performed for all four
structures. Input parameters and calculated values are detailed in Table VII. Model parameters
were chosen from the included library so that resulting TCP and NTCP estimates are not
equal to 0 or 1. All individual TCP and NTCP values and composite metrics (composite TCP,
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Figure 5. Benchmark case for verification of EUD, NTCP, TCP, and P+ calculations in Pinnacle. (a) Beam
setup and structures. (b) DVHs.
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composite NTCP, and P+) reported by Pinnacle closely matched (<0.5%) the same quantities
calculated on the spreadsheet using Eqs. [(5)–(8)] for TCP and Eqs. [(6)–(8), (16)] for NTCP. A
close agreement (<1.5%) was also obtained between TCP and NTCP estimates reported by
NTCP/TCP Editor (another tool in Pinnacle) and corresponding quantities calculated from the
DVHs using Eqs. (13)–(15).

Similar calculations were performed using the evaluation tool in Eclipse with DVHs for the
benchmark phantom generated from Eclipse. The TCP/NTCP values obtained with Eclipse were
found to agree, within one percentage point, with those generated by Pinnacle (Biological
Response panel). For example, TCP/NTCP values for one of the rectangular structures were
0.81/0.19 and 0.80/0.18 for Pinnacle and Eclipse, respectively.
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Table VI. Details of Benchmark Phantom Structures.

Dimensions X coordinate Y coordinate Depth range
Structure (cm) range (cm) range (cm) (cm)

PTV Rectangle 4 × 4 × 2 –2 to 2 –2 to 2 4 to 6

Rectangle 1 2 × 4 × 8 –2 to 0 –2 to 2 6 to 14

Rectangle 2 2 × 2 × 18 0 to 2 –2 to 2 6 to 24

Triangle 1 4 × 4 (base) × 20 0 × 0 –2 to 2 4 to 24
at depth = 4

–2 to 2
at depth = 24

Table VII. TCP and NTCP Values Calculated for DVHs Obtained in the Benchmark Phantom.
Values for TCP and NTCP were calculated using a dose distribution calculated in the Pinnacle

system (section IV.D.1). Variability among institutions in reproducing the phantom and differences
in 6 MV photon beams will produce small inter-institutional differences in the calculated values.

PTV Rectangle PTV Rectangle Rectangle Triangle
Structure Rectangle 1 Rectangle 1 2 1

D50 (Gy) 63.3 44.2 80 75.1 55.3 46

g 5 1.6 3 2.8 3.1 1.8

a /b (Gy) 10 10 3 3 3 3

Seriality N/A N/A 0.18 8.4 0.69 1

Function TCP TCP NTCP NTCP NTCP NTCP

Value (%) 94.1 80.3 26.6 18.1 23.5 29.5
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The presence of two different tools to calculate TCP and NTCP in Pinnacle (Biological
Response panel and NTCP/TCP Editor) offers the user greater flexibility. The TCP model imple-
mented in the NTCP/TCP Editor is not widely used in the literature, and a database of model
parameters is not provided, which is likely to steer users toward the Biological Response panel
for all TCP calculations. On the other hand, the LKB model implemented in the Editor is much
more widely used than the Poisson-based NTCP model from the Biological Response panel. For
both models, the origin of parameters included in the library can be traced to the organ toler-
ance data of Emami et al. (1991). It is therefore reasonable to hypothesize that the NTCP mod-
els in the Biological Response panel and NTCP/TCP Editor should provide similar estimates for
the same endpoint and dose distribution. To test that, structures and endpoints for NTCP calcu-
lations in NTCP/TCP Editor were matched to those previously selected in the Biological
Response panel. The two tools produce somewhat different values of NTCP, with the Editor giv-
ing smaller estimates for all structure/endpoint combinations. In one case, an NTCP estimate
provided by the Editor was smaller by a factor of 2 than the corresponding estimate from the
Biological Response panel (25% vs. 50%). Users should be cautioned against using models and
parameter estimates of unverified origin, if predicted TCP/NTCP values are to be used for making
clinical decisions. A similar warning statement is provided in the vendor’s user manual.
Alternatively, users can input their own or other validated data using the tools provided in the TPS.

IV.D.2. Comparison of Plans Generated by Monaco, Pinnacle,
and Eclipse Systems

Treatment plans for three representative test cases designed using CMS Monaco (V1.0), Philips
Pinnacle (V8.0h), and Varian Eclipse (V10.0) are compared in Figure 6. The head & neck plan
shown in Figure 6 is the same that was used for the sensitivity studies (sections IV.A.2 and
IV.B.3). The gEUD values computed based on these DVHs for selected organs are tabulated in
Table VIII. The gEUD values were calculated based on the power law [Eq. (1)] and the param-
eter a used is included in the table. All Monaco plans resulted in substantially less homogeneous
target dose distributions compared to the Pinnacle and Eclipse plans. This result is a conse-
quence of the compulsory cell killing objective which penalizes small cold spots less drastically
than physical minimum dose penalties and the practice of normalizing the treatment plans to the
minimum dose in the target, not to equivalent target EUD (note that Monaco also allows users
to supplement the target EUD cost function with physical constraints). In terms of OAR sparing,
the three TPS produced plans of similar quality for the head & neck case, with the exception of
the spinal cord PRV dose in the Eclipse plan. In the prostate case, Pinnacle offers somewhat bet-
ter sparing of the rectum at low and intermediate doses. It has been previously demonstrated
that one can use Monaco to generate plans with substantially better OAR sparing compared to
the plans designed using DV-based TPS XiO (Semenenko et al. 2008). The same trend has been
observed for plans created in Pinnacle using biological vs. DV-based cost functions (Qi et al.
2009), similar to those reported previously (Wu et al. 2002, 2003, 2005).

THE USE AND QA OF BIOLOGICALLY RELATED MODELS FOR TREATMENT PLANNING
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Figure 6. DVHs for head & neck, prostate, and brain cases obtained using biologically based optimiza-
tion features implemented in CMS Monaco (solid lines), Philips Pinnacle (dashed lines), and Varian
Eclipse (dotted lines).
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Table VIII. gEUD (Gy) Values Calculated Based on the DVHs for Three Sample Plans
along with the Parameter a Used.

Case Organs a Value Monaco Pinnacle Eclipse

Head & Neck PTV 70 –10 74.40 71.99 72.15

PTV 54 –10 59.59 61.04 59.01

PTV 50 –10 53.79 53.25 52.13

Cord PRV 20 27.19 27.77 39.91

Lt parotid gland 1 23.12 23.12 23.61

Rt parotid gland 1 20.57 23.05 23.11

Mandible 10 38.52 38.66 38.78

Prostate PTV 70.2 –10 73.61 71.77 71.41

Rectum 8 46.11 44.61 41.30

Bladder 8 43.21 43.00 45.79

Lt femoral head 12 14.76 20.09 18.21

Rt femoral head 12 16.86 18.43 13.90

Pubic bone 12 41.25 41.19 49.06

Brain GTV 54 –10 56.08 55.55 56.56

PTV 50.4 –10 54.11 53.90 53.26

Brain stem 16 41.61 40.06 42.80

Optic chiasm 16 46.11 44.99 41.68

Lt eye 16 1.94 2.29 1.08

Rt eye 16 2.04 2.45 1.13

Lt optic nerve 16 12.33 10.12 8.68

Rt optic nerve 16 14.07 17.16 8.61

Lt inner ear 16 16.28 18.60 18.22

Rt inner ear 16 34.36 34.00 34.57

Lt = Left
Rt = Right
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V. ACCEPTANCE, COMMISSIONING, AND ROUTINE QA TESTS
FOR BIOLOGICALLY BASED PLANNING SYSTEMS

The acceptance, commissioning, and periodic QA tests recommended by previous TG reports
[TG-40, Kutcher et al. (1994); TG-53, Fraass et al. (1998); TG-119, Ezzell et al. (2009);
TG-142, Klein et al. (2009)] for general TPS features (e.g., data input/output, dose calculations,
plan deliverability, clinical software tools) should be performed for BBTPS. These recommen-
dations will not be repeated here. The aim of this section is to provide examples of the additional
QA tests specific to general features pertinent to BBTPS. Physicists are encouraged to develop
their own QA tests specific to the BBTPS in use at their clinics. It is expected that a more com-
plete list of such QA tests will become available as more practical experience is gained in the
future. All acceptance and commissioning tests should be carried out on the system after it has
been installed in the clinic but before it is used clinically.

V.A. ACCEPTANCE TESTS

Based on the previous TG reports [TG-40, Kutcher et al. (1994); TG-53, Fraass et al. (1998)],
an acceptance test is performed to confirm that the TPS performs according to its specifications.
Because the quantifiable and testable specifications are generally lacking for a BBTPS at the
present time, the acceptance testing may be limited to verify functionalities offered by the
BBTPS. Examples of these functionalities that might be included in the acceptance testing are:
(1) allowing user to update model and/or model parameters, (2) allowing user to specify model-
based goals and constraints for optimization, and (3) allowing user to evaluate plan based on
biological metrics.

V.B. COMMISSIONING TESTS

V.B.1. Selective Verification of Biological Metrics

Biological metrics, i.e., EUD/TCP/NTCP, calculated within a TPS should be independently ver-
ified by the user for selected cases before routine clinical use and after major upgrades. The
benchmark phantom used in this report (section IV.D.1) may be used in this verification. If fully
validated by the medical physics community, other research software tools, such as CERR
(Deasy et al. 2003) at http://radium.wustl.edu/CERR/about.php), BIOPLAN (Sanchez-Nieto
and Nahum 2000), or BioSuite (Uzan and Nahum 2009), may be used as evaluation tools. TPS
vendors are urged to provide detailed descriptions of all implemented models and parameter val-
ues to make this possible. It is also recommended that TPS vendors provide tools to export dose
distributions, DVHs, and 3D dose matrices to external programs. Note that results may differ
whether EUD/TCP/NTCP is calculated using the dose grid or DVH (section III.A.4). TPS doc-
umentation should clearly state the technique used to calculate all biological metrics.

V.B.2. Double Planning

It is recommended that for the first several cases from each representative tumor site, new users
of BBTPS prepare second plans using their standard DV-based TPS. New and traditional plans
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can be compared to help understand how different aspects of a dose distribution are controlled
by biological cost functions. Preparation of backup plans may be discontinued after sufficient
expertise in treatment planning and knowledge of advantages/limitations the BBTPS have been
gained.

V.B.3. Compilation of Benchmark 3D Datasets and DVHs for Major Sites

The task group has prepared sample plans for the benchmark phantom and three test cases rep-
resenting major sites often treated using IMRT: head & neck, prostate, and brain. Image and
structure sets in the DICOM format as well as tabular DVH data for these three cases can be
downloaded from:

• http://www.aapm.org/org/committees/TG166/TG166prostate.zip,

• http://www.aapm.org/org/committees/TG166/TG166headneck.zip,

• http://www.aapm.org/org/committees/TG166/TG166brain.zip, and

• http://www.aapm.org/org/committees/TG166/EUD_Monaco_Pinnacle_Eclipse.xls.

Note that these sample plans do not necessarily represent the best plans possible for the cases.
They are provided for comparison purposes. Physicists attempting to commission a BBTPS may
compare plans obtained with their system to these sample plans and may explore whether simi-
lar or better plans can be obtained with the BBTPS in question. If applicable, the EUD values
provided for these sample plans in Table VIII may be used to validate the EUD calculation in the
testing of BBTPS.

V.C. PROCEDURES FOR ROUTINE QA

It is suggested that users of biologically based TPS prepare an IMRT sample plan generated by
the biologically based plan optimization based on either one of the benchmark cases or the
user’s own case at the time of commissioning. This sample case should be re-planned annually
or after major upgrades and compared to the baseline data, i.e., DVHs, EUD/TCP/NTCP, to
ensure that models, parameters, and algorithms implemented in the TPS plan optimization
remain the same. For a BBTPS with a biologically based plan evaluation tool, users should pre-
pare a 3D dose distribution based on one of the benchmark cases or the user’s own case and
obtain its baseline DV and biological metrics using the evaluation tool at the time of commis-
sioning. These metrics should be re-evaluated annually or after major upgrades. The new met-
rics should be identical to the baseline data. For TPS capable of Monte Carlo dose calculations,
a non-stochastic dose calculation algorithm should be used, if available, for initial and subse-
quent treatment planning to eliminate statistical uncertainties associated with the Monte Carlo
method (section III.A.4).
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VI. VISION OF TG-166 FOR FUTURE DEVELOPMENT
OF BIOLOGICALLY BASED TREATMENT PLANNING

VI.A. EVOLUTION OF BIOLOGICALLY BASED TREATMENT PLANNING
SYSTEMS

A TG-166 vision for current and future developments in BBTP is summarized in Table IX. The
majority of existing TPS employ DV-based cost functions for treatment plan optimization. Plan
evaluation is also performed using DV criteria, i.e., 3D dose distributions and DVHs. Although
some of the existing systems provide tools for calculation of TCP/NTCP with a purpose of plan
evaluation, these tools are not well documented and are not supplied with databases of reliable
model parameters and therefore have not found a widespread use among radiation treatment
planners or evaluators. This state of affairs is designated as Stage 0 in the proposed BBTP evo-
lution scheme.

Initial transition to Stage 1 has occurred with an emergence of the first TPS employing EUD-
based cost functions for plan optimization (section IV). TPS representative of this stage may
provide framework not only for biologically based optimization (e.g., CMS Monaco), but may
also offer practical tools for biologically based plan evaluation (e.g., Philips Pinnacle).
Incorporation of plan comparison tools based on EUD, TCP, NTCP, and uncomplicated tumor
control probability (UTCP) functions into commercial TPS is a welcome development. Provided
that such tools are intuitive and easy to use, a greater number of radiation oncology profession-
als will be willing to gradually integrate biological metrics into their clinical practice, which will
facilitate transition to Stage 2 in the evolution of BBTP.
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Table IX. Evolution of BBTP.

Evolution Plan Optimization Plan Evaluation
Stage Strategy Strategy Representative TPS

0 DV-based cost functions DVHs All IMRT TPSs

1 EUD for OARs; EUD- and DVHs and relative values CMS Monaco
DV-based cost functions for of TCP/NTCP/UTCP Philips Pinnacle
targets Varian Eclipse

2 EUD-based cost functions Absolute values of Future developments
for all structures TCP/NTCP/UTCP

3 Absolute values of Absolute values of Future developments
TCP/NTCP/UTCP TCP/NTCP/UTCP
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The principal difference between Stages 1 and 2 is that TCP and NTCP functions will play
a more important role in the treatment plan evaluation process and will supersede DV metrics
as the major indicators of plan quality. As opposed to the use of TCP and NTCP in Stage 1,
where these estimates are used primarily in a relative fashion as an ancillary tool to compare
alternative treatment plans, in Stage 2 the growing confidence in predictive power of dose-
response models will allow decisions about plan quality to be based on absolute estimates of
TCP/NTCP. Because the effectiveness of a plan will be judged by the predicted biological out-
come, dose-based constraints will no longer be required to force target dose to be as uniform
as possible so long as the plan results in desired values of TCP and inhomogeneous target
doses do not jeopardize intermixed normal tissues; and therefore treatments could be optimized
based on EUD-based cost functions alone. Stage 2 must be accompanied by clear supporting
evidence for the reliability of each model used and may be adopted at different times for differ-
ent disease sites.

Transition to non-uniform target dose distributions represents a major paradigm shift in
treatment planning. The requirement for uniform dose delivery was a long-standing tradition in
our field. It may have been based on the assumption that tumors behave as “parallel structures,”
and that the ultimate TCP will be related to the minimum dose. Seeking a uniform target dose
that exceeds the desired minimum was a way to reduce the overall integral dose/exposure to the
patient. This concept has also been rooted in convention (ICRU 1993, Report 50). However,
there is no proof that this construct is valid for tumors. Relaxing target uniformity constraint,
and allowing hot spots within the target, may afford the planner increased flexibility in creating
a better plan that may lead to better critical structure sparing (De Gersem et al. 1999). Table X
summarizes arguments in favor and against using heterogeneous dose distributions. While most
of the supporting arguments are theoretical, there are some examples where non-uniform dose
delivery has proven to be safe and effective, e.g., brachytherapy, intracranial SRS, and simulta-
neously integrated boost. It is also known that, due to organ motion and daily setup uncertain-
ties, actual delivered dose distr ibutions are less homogeneous than the planned dose
distributions, especially if small margins are used (Killoran et al. 1997). This implies that sev-
eral generations of radiation oncologists have been treating patients using moderately inhomoge-
neous dose distributions.

The ultimate BBTP (Table IX, Stage 3) is represented by a scenario in which treatment plans
will be optimized using objective scores based on TCP/NTCP (e.g., Källman et al. 1992a;
Brenner and Sachs 1999). The optimized values of TCP and NTCP will be used directly to eval-
uate treatment plans.
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Table X. Pros and Cons of Homogeneous versus Heterogeneous Tumor Dose Distributions.

Homogeneous Dose Partial Tumor Boosts Heterogeneous Dose

Pros
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Proven track record.

Consistent with classical
radiobiology.

Less ambiguity in
reporting and analyzing
delivered doses.

Hot spots are probably
useless unless they cover
most of the tumor or the
most resistant sub-volume.

Most logical approach if
information about tumor
heterogeneity is not
available.

Predicted to be effective
under a wide range of
theoretical assumptions.

Easy to do using IMRT.

The PTV margin provides
a natural “draw-down”
region between a GTV
boost and critical normal
structures.

Adds another degree of
freedom to the treatment
planning problem and can
lead to better critical
structure sparing.

Hot spots may not be
detrimental if they are
located inside the GTV.

Because tumors are
heterogeneous
(e.g., positron emission
tomography (PET)
imaging), there is no
reason that tumor dose
should be uniform.

Would allow biological
targeting via the use of
PET, etc.

Stereotactic and implant
experience is supportive
although in different
dose/dose-rate regimens.

Old school/tradition-
driven.

Opportunity to exploit
tumor heterogeneities is
lost.

Opportunity to use the
flexibility of IMRT is
limited.

Mounting data support the
notion that heterogeneous
dose may be advantageous.

No consistent human or
animal data to confirm
positive effects, although
supportive data can be
found for certain tumor
sites.

Due to temporal changes
in tumor volumes, effect of
partial tumor boost may be
diminished.

No consistent human or
animal data to confirm
positive effects, although
supportive data can be
found for certain tumor
sites.

Theoretical benefits are
limited by the accuracy of
TCP models.

Effect of cold spots may
be underestimated,
especially if cold spots are
located in the GTV.

Must be careful that hot
spots within the PTV are
located within the GTV,
and not the normal tissue
margin.

Cons
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VI.B. DESIRED FEATURES AND FUNCTIONALITIES FOR FUTURE
BIOLOGICALLY BASED TREATMENT PLANNING SYSTEMS

It is instructive to speculate as to what constitutes an ideal (optimal) BBTPS. Many preferred
general features for TPS (e.g., fast and accurate dose calculation and optimization algorithms,
same dose engine for optimization and for forward calculation, accurate DVH generation, robust
and effective input and output tools) are also important for future BBTPS. In addition, the
following characteristics and functionalities are desirable for a BBTPS:

(1) The system should allow the user to input or to update models and model parameters
for both plan evaluation and optimization. A library of model parameters, containing
the default parameter values with capability of allowing user to update these parame-
ters based on specific clinical situation or local patient population, should be provided.
The system should supply detailed documentation for the models and the default
parameter sets (their origin, applicability, and provenance). For example, the LKB
NTCP model along with a database of parameters for common organs and endpoints,
indicating the sources (e.g., QUANTEC), should be provided. For an updated model,
inclusion of new biological or medical factors might introduce additional uncertainties.
The user should be provided with the tools to do the calculations based on both latest
and previous models. As there may be competing models for a given clinical situation,
the user should have a choice regarding which model should be used for the situation.
There might be clinical reasons to trust one type of model over others in certain situa-
tions. The system should allow user to consider organ interaction (e.g., interaction
between heart and lung, or liver and kidney) by modifying model(s) and/or selecting
model parameters. Note that some of these features are included in the existing TPSs
(e.g., Pinnacle).

(2) The system should allow combinations of biological model- and DV-based constraints
for all structures in the optimization. For example, one might want to use lung EUD (or
LKB NTCP model) but also keep V20 below 35%. The maximum dose may be used as
hard constraint to limit hot spot. For some organs, the user may choose to use DV con-
straints only. (For example, the uniform dose that approaches the tolerance dose for
brainstem may be used in the overlap region of brainstem and glioma PTV.) For cer-
tain situations, a hybrid approach, e.g., using DV-based optimization followed by bio-
logically based optimization (Das 2010), may be helpful.

(3) The optimizer should “reward” getting lower NTCP than requested, if that is possible
without violating the higher priority goals or preventing lower priorities from being
achieved, and should allow maximizing TCP for a given NTCP or minimizing NTCP
for a given TCP.

(4) The system should allow the user to define “stop values” for iteration during plan opti-
mization. For example, the plan optimization may attempt to lower EUD or NTCP for
normal tissue no matter what they are. The user-defined value below which further opti-
mization is unnecessary would improve efficiency of the optimization.
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(5) The user should be able to input “dose-modifying factors” to account for the effects of
certain medical factors such as the use of chemotherapy, pre-existing conditions (e.g.,
diabetes), and lifestyle choices (e.g., tobacco use), or biological factors such as genetic
predispositions to a complication. For example, if chemotherapy is known to be a fac-
tor, the user can choose either using a different set of model parameters, or introducing
a dose-modifying factor. The system should provide the user with the opportunity to
assess the potential variations in outcome with changes in these factors. For example,
estimations such as “this plan is anticipated to increase the patient’s risk of lung cancer
by xx%, and this risk can be reduced to yy% if the patient discontinues smoking
tobacco” could be informative.

(6) The system should have connectivity with medical information systems such that clini-
cal parameters that might be used in optimization (e.g., pulmonary function tests) can
be accurately and directly incorporated. Similarly, clinical information within the med-
ical information systems may be needed to determine which predictive model(s) to use.
For example, the predictive models for pneumonitis might be different for patients with
cancers of the lung vs. breast.

(7) The system should provide an option to assess the outcomes of a tentative plan reflec-
tive of anticipated delivery uncertainties including setup errors, inter- and intrafrac-
tional anatomic variations. The system should allow building a population-based or
patient-specific probability distribution into the evaluation of TCP and NTCP, perhaps
with “confidence limited” NTCPs and TCPs for a given population-based or patient-
specific motion probability distribution.

(8) For a given treatment, the best achievable dose distribution depends on the patient
geometry and the physical limitations of the radiation in question. For example, the
minimal dose to an OAR adjacent to the PTV mostly depends on the distance between
the OAR and PTV and the physical characteristics of the radiation beam and the degra-
dation in target coverage (TCP) that the physician is willing to accept. It is desirable
that the TPS can estimate best possible NTCP conditional on a chosen TCP, avoiding
the unnecessary effort in search for non-achievable plans.

(9) Models should allow for spatial radiobiological variations (e.g., clonogenic cell density,
radiosensitivity, hypoxia) linking to biological/functional images. The planning system
should provide a “painting-by-number” feature (Ling et al. 2000; Wu et al. 2005). That
is, the user should be able to generate a highly non-uniform dose distribution based on
the spatially varying biological/functional information. Plan evaluation tools, such as
the functional DVH (fDVH) (Lu et al. 1997; Marks et al. 1999) that can take into
account the spatial distribution of the functional importance, should be provided.

(10) Outcome models should be able to consider time effects (e.g., treatment breaks, frac-
tionation, tumor growth, and delivery time). The system should have the capability to
optimize around a prior dose distribution either from external beams or from
brachytherapy. Validated deformable registration for calculating delivered dose from
previous treatment courses should be available.

(11) The system should have user-friendly graphic tools to show information during the
optimization process. This information includes table with constraints and priorities,
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graphs displaying components of cost function (biologically based and/or DV-based
constraints), DV and/or biological indices as in the current iteration.

(12) For plan evaluation, the calculation of biological indices should be accompanied by
parameter sensitivity analysis. Ability to renormalize/adjust a plan to achieve biological
goals is also useful. For example, in addition to being able to renormalize the plan
according to DV criteria (e.g., 98% of PTV receives at least 95% prescription dose)
renormalize to achieve an acceptable value of NTCP or EUD for a given OAR.

VII. SUMMARY OF RECOMMENDATIONS AND PRECAUTIONS
FOR CLINICAL USE OF BIOLOGICALLY BASED MODELS

VII.A. GENERAL RECOMMENDATIONS

Biologically based cost functions for OARs may be preferable to DV constraints because the for-
mer typically controls entire portions of the DV domain whereas the latter controls only a sin-
gle point. For OARs requiring more than one DV constraint for inverse treatment planning, it
may be preferable to replace multiple constraints by a single EUD-based cost function with
appropriate choice of a volume effect parameter. Because a biological cost function controls
greater space in the DV domain, it may be more effective in optimizing a plan towards OAR
sparing as compared to the use of DV constraints.

Currently implemented biological cost functions for target volumes control only cold spots.
These functions are not essential to obtain good quality plans and may be replaced with mini-
mum dose constraints on target dose even in biologically based optimization.

Biological cost functions for target volumes do not effectively control hot spots. Despite some
evidence in favor of less homogeneous target dose distributions, TG-166 maintains that highly
non-uniform dose distributions caused by the optimization technique (as opposed to deliberate
and tested non-uniformity as is seen in SRS, simultaneously integrated boost techniques, and
brachytherapy) should be avoided. To obtain clinically acceptable plans with respect to target
dose homogeneity, biological cost functions should be supplemented with maximum-dose–type
physical cost functions.

At present, the plan evaluation should be performed based on established DV criteria.
Therefore, biologically based TPSs must present physical parameters (i.e., DVHs; minimum,
maximum, mean dose) along with any biological metrics. EUD can be used to rank plans pro-
vided the parameter a is calibrated appropriately. Relative estimates of biological indices (i.e.,
TCP, NTCP, and UTCP) may be used to help select rival plans, provided that the users under-
stand the range of applicability of models and parameter values implemented in their TPS.
Use of absolute estimates of TCP/NTCP as main indicators of plan quality is not warranted at
this time.

Regardless of advancement of biological tools for treatment planning, TG-166 recommends
that review of 3D dose distributions always remain a part of the treatment plan evaluation
process. TPSs should allow the dose to be viewed in multiple planes (e.g., axial, coronal, and
sagittal, as well as non-standard planes and an overall volumetric display) since hot spots in non-
specific tissues and heterogeneities in physiology/function within tumor/normal tissues are some-
times more clearly understood in these other planes.
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If the parameter a cannot be calibrated in the calculation of EUD, the following generic val-
ues may be used as starting values: a = 1 for a parallel organ and a = 8 for a serial organ. An
uncertainty analysis should be performed by calculating a type of confidence interval around the
calculated EUD values, for example, by calculating the lower and upper bounds on the EUD
using a = 0.5 and a = 3 for parallel structures, and a = 4 and a = 15 for a serial structures.

VII.B. TPS-SPECIFIC RECOMMENDATIONS

The recommendations below apply to the specific system versions described in section IV.

VII.B.1. CMS Monaco

Commonly found values for the cell sensitivity of tumors of ~0.25 Gy–1 frequently do not
penalize cold spots as forcefully as demanded by clinical practice, so that higher values of cell
sensitivity may have a greater utility, if less biological meaning. However, for the selected test
case (section IV.A.2), the choice of cell sensitivity parameter had minimal impact on the min-
imum PTV dose.

The Poisson statistics cell kill model should always be used in conjunction with a physical
constraint, either the Maximum dose or Quadratic overdose penalty. Failure to specify the sec-
ond cost function results in convergence problems and long running times.

Reasonable starting points for EUD constraints can be derived by an EUD computation for a
number of acceptable dose distributions in each institution. Typically, without biological opti-
mization the EUD values will be spread out over an interval of values. A good starting point
could be the median of this distribution, meaning that half of the patients could get a lower EUD
by means of biologically constrained optimization.

VII.B.2. Philips Pinnacle

By adjusting the volume parameter, the Max EUD objective can be used to specify optimization
goals for all types of OARs.

In case of a single PTV, combining the Target EUD objective with the Uniformity constraint
yields good results.

For plans with multiple PTVs, using Min dose and Max dose cost functions offers better con-
trol over target dose distributions.

VII.B.3. Varian Eclipse

Use of Min/Max dose or percentage structure volume at dose provides more reliable control over
target dose distributions. Effect of adding EUD or TCP models should be carefully monitored to
avoid introducing target dose heterogeneities that would not be accepted in clinical plans.

Adjusting TD50 and n values in LKB model can be used to shape evolution of OAR DVH in
optimizer.

Adjusting volume parameter and target EUD can be used to shape the DVH on OARs.
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TG-166 proposes a new term—“cell killing-based EUD” or “cEUD”—to help distinguish a
class of expressions based on mechanistic models of cell killing (Niemierko 1997) from the
empirical generalized equivalent uniform dose (gEUD) formula (section II.A). cEUD is derived
by equating survival fractions or TCP for the equivalent uniform and the true non-uniform dose
delivery scenarios. In its most simplified form, cEUD is given by (Niemierko 1997):

(A1)

where Dref = 2 Gy is the reference dose, SF2 is the surviving fraction at the reference dose, and
(Di, vi) are bins of a differential DVH for the non-uniform distribution of interest. The underly-
ing assumption in the Eq. (A1) is that cell survival can be approximated by an exponential func-
tion of dose. This is a valid assumption for tumor cell survival typically characterized by large
a /b, of the order of 10 Gy. The other assumption is that dose distribution is nearly homogenous,
which also typically holds for tumors. cEUD is independent of the total number of clonogens.

Other radiobiological details, such as non-uniform spatial distribution of clonogens, dose-
fractionation effects, interpatient heterogeneity, etc., can be easily incorporated into the expres-
sion for cEUD at the expense of additional parameters (Niemierko 1997).

cEUD is relatively insensitive to the level of inter-patient heterogeneity and the value of
a /b ratio used for dose-per-fraction corrections, and therefore the simplest version of cEUD
[Eq. (A1)] can often be used with sufficient accuracy (Niemierko 1997). Comparisons of cEUD
with the TCP model incorporating interpatient heterogeneity [Eq. (B3)] show that cEUD is a
more robust concept, which implies that it is safer to use in the environment of large uncertain-
ties in radiobiological parameters (Ebert 2000). These properties make cEUD an attractive
quantity for BBTP.
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APPENDIX A

cEUD: Cell Killing-Based Equivalent Uniform Dose
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To account for repopulation, the LQ survival probability is often multiplied by an exponential
term (Fowler 1989) exp[h max(T – Tk ,0)], where h is the proliferation rate (note that this
parameter is usually designated by g in the literature, but it is assigned a different symbol in this
report to avoid confusion with the slope parameter), Tk is the time at which repopulation begins
after the start of treatment, and T is the overall treatment time. The expression for TCP then
becomes

(B1)

This model can be easily extended to a case of non-uniform dose distribution in the tumor:

(B2)

where r is the clonogen density, here assumed to be uniform throughout the tumor, and vi is
the fractional volume of the tumor irradiated to a dose Di. For practical calculations, bins of a
differential DVH, (Di, vi), may be used.

Equation (B1) has been used (sometimes with omission of the time factor) in a number of
studies to estimate parameters from clinical data (e.g., Brenner 1993; Roberts and Hendry 1993;
Wu et al. 1997) and found to yield unreasonably low estimates of a and N (King and Mayo
2000). Some authors (Zaider and Minerbo 2000; Brenner et al. 2002) argue that this is a correct
result because tumor control requires the eradication of a very small number of highly radiore-
sistant clonogens, but more often, these findings may be attributed to a failure of Eq. (B1) to
account for inter-patient heterogeneity in the model parameters, particularly a, which would
inevitably be present in any clinical cohort (Suit et al. 1992; Brenner 1993; Webb 1994; Webb
and Nahum 1998). Webb and Nahum (1993), Webb (1994), and Nahum and Sanchez-Nieto
(2001) have modeled interpatient heterogeneity by assuming that a is normally distributed with
the mean and standard deviation σa :

(B3)

where TCP(a) is given by Eqs. (B1) or (B2). Roberts and Hendry (1998) have proposed a
closed-form TCP model incorporating interpatient heterogeneity that has the same number of
adjustable parameters (five) as Eqs. (B1) or (B2).
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The critical element or serial model is premised on a simple argument that, if the probability of
failure for a single FSU, p, is known, the probability of failure for an entire organ composed of
N FSUs arranged in a series can be calculated as 1 – (1 – p)N [e.g., Withers et al. (1988)].
Additional mathematical manipulations [see Schultheiss et al. (1983) and Niemierko and
Goitein (1991) for details] allow expressing NTCP for a non-uniformly irradiated organ through
a complication probability for the entire organ irradiated uniformly, P(Di):

(C1)

where vi is the fractional organ volume receiving a dose Di. The dose-response relationship for
a uniformly irradiated organ is often described empirically by the log-logistic function (Eq. 11).
The model directly accommodates non-uniform dose distributions and does not require a sepa-
rate DVH reduction algorithm.

The critical volume or parallel model (Withers et al. 1988; Niemierko and Goitein 1993;
Yorke et al. 1993; Jackson et al. 1993) hypothesizes that NTCP for a parallel-type organ is
related to the fraction of FSUs that are destroyed by radiation rather than the absolute number of
damaged FSUs. The complication occurs when this fraction, denoted the fraction damaged or
fdam, exceeds some critical value referred to as “functional reserve.” For a non-uniformly irradi-
ated organ or tissue, the fraction damaged is calculated according to

(C2)

where vi is the fractional organ volume receiving a dose Di and P(Di) is the probability of destroy-
ing a single FSU following a uniform irradiation with the dose Di (Jackson et al. 1995). The prob-
ability p(Di) is often expressed using the empirical sigmoid relationship given by Eq. (11), where
the two parameters have the same meaning as described above but refer to the response of an
individual FSU rather than the entire organ (Jackson et al. 1995; Yorke et al. 2002).

In order to relate fdam to clinically observed complication rates, a distribution of functional
reserves among the patient population must be specified. Jackson et al. (1995) used the normal
distribution involving two additional parameters to describe the population mean and the stan-
dard deviation of functional reserves, which brings the total number of parameters to four. To
avoid specifying these extra parameters for the parallel model, it is often considered practical to
directly use fdam for treatment evaluation and optimization (Yorke et al. 2002).
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